Journals →  Tsvetnye Metally →  2024 →  #2 →  Back

COMPOSITES AND MULTIPURPOSE COATINGS
ArticleName Physico-chemical process behind self-disintegration of sinter resulting in the production of aluminium oxide and calcium γ-orthosilicate
DOI 10.17580/tsm.2024.02.10
ArticleAuthor Lebedev A. B., Bazhin V. Yu., Zhadovskiy I. T.
ArticleAuthorData

Empress Catherine II St Petersburg Mining University, Saint Petersburg, Russia

A. B. Lebedev, Research Fellow at the Research Centre for Resources Processing, Candidate of Technical Sciences, e-mail: 2799957@mail.ru
V. Yu. Bazhin, Professor, Head of Metallurgy Department, Doctor of Technical Sciences, e-mail: bazhin-alfoil@mail.ru
I. T. Zhadovskiy, Associate Professor at the Department of General and Physical Chemistry, Candidate of Chemical Sciences, e-mail: sergaur@mail.ru 

Abstract

Polymorphism typical of calcium orthosilicate is a phenomenon that is being studied more and more widely replacing the energy consuming crushing process. Polymorphous β and γ transitions of Ca2SiO4 take place as sinters, which contain the corresponding modifications of orthosilicate or pyroaluminate of calcium, are cooling down and then self-disintegrate. The latter process is used in alumina industry. The process duration should be limited to an optimum indicator. To solve the above problem, the authors examined the following modifications of calcium orthosilicate: α, α', β, γ. Differential thermal analysis revealed the existence of 5 phase modifications: αα'α''βγ. It was confirmed that the difference between β and γ phases is due to the arrangement of tetrahedrons [SiO4]4+ relative to the Ca2+ cations in the calcium orthosilicate lattice. The two structures have different lattice symmetry and parameters and correspondingly, different physical and chemical properties. The stable modification takes place at the temperatures of 539–550 oC and has the lowest free energy. The paper describes a relationship between the free energies of β and γ modifications and the temperature. It was found that a new phase is completely formed in 30 min at 350 oC. The selfdisintegration temperature of pure calcium orthosilicate was established (i.e. 525 oC). A dropping temperature model was built. It was found that the less the principal quantum number Wn of the foreign cation, its valency and electronegativity are and the more the atomic radius is, the weaker the stabilizing properties are. The total thermal effect was determined with belite formation – 100,273.86 J/mol. The thermal effect of the polymorphous β → γ-Ca2SiO4 transition with selfdisintegration is 5,568.44 J/mol higher. The practical value of this factor is that it determines the specific area of the self-disintegrated powder and the microstructure of its grains. Total savings may amount to 8 bln roubles per year. Rapid cooling of the sinter entails supercooling of the β phase. As a result, the self-disintegration process is associated with 60% belite and 30% aluminate.

keywords β → γ-Ca2SiO4 transitions, energy state, granules of belite and aluminate, calcium orthosilicate, self-disintegration of sinter, intensity factor
References

1. Vasilkova A. O., Vasilkov N. V., Khmelnitskaya O. D., Gazaleeva G. I. Processing of secondary gold-bearing materials: Analysis of the current status. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2021. Vol. 25, No. 1. pp. 97–107.
2. Sizyakov V. M., Brichkin V. N. On the role of calcium hydrocarboaluminates in nepheline processing technology optimization. Journal of Mining Institute. 2018. Vol. 231. pp. 292–298. DOI: 10.25515/PMI.2018.3.292
3. Sizyakov V. M., Litvinova T. E., Brichkin V. N., Fedorov A. T. Modern physico-chemical description of equilibria in the Na2O–Al2O3–H2O system and similar systems. Journal of Mining Institute. 2019. Vol. 237. pp. 298–306. DOI: 10.31897/PMI.2019.3.298
4. Piirainen V. Yu., Barinkova A. A. Development of composite materials based on red mud. Obogashchenie Rud. 2023. No. 3. P. 37–43.
5. Piirainen V. Yu., Mikhailov A. V., Barinkov V. M., Starovoitov V. N. The use of sludge-peat composition for the processing of alumina production waste. Obogashchenie Rud. 2022. No. 6. P. 51–58.
6. Pyagay I. N., Shaidulina A. A., Konoplin R. R., Artyushevskiy D. I. et al. Production of amorphous silicon dioxide derived from aluminum fluoride industrial waste and consideration of the possibility of its use as Al2O3 – SiO2 catalyst supports. Catalysts. 2022. Vol. 12, No. 2. pp. 1–13.
7. Karpova K. S., Karpov A. V. Solid-phase reduction of iron oxides in a laboratory environment. Sovremennye materialy, tekhnika i tekhnologii. 2018. No. 1. pp. 27–32.
8. Trushko V. L., Utkov V. A. Development of import subtituting technologies for increasing productivity of sintering machines and strength of agglome rates. Journal of Mining Institute. 2016. Vol. 221. pp. 675–680. DOI: 10.18454/pmi.2016.5.675
9. Ioannidi A., Oulego P., Collado S., Petala A. et al. Persulfate activation by modified red mud for the oxidation of antibiotic sulfamethoxazole in water. Journal of Environmental Management. 2020. Vol. 270. 110820. DOI: 10.1016/j.jenvman.2020.110820
10. Jia Y., Yang C., Chen X., Xue W. et al. A review on electrospun magnetic nanomaterials: methods, properties and applications. Journal of Materials Chemistry C. 2021. Vol. 9, No. 29. pp. 9042–9082. DOI: 10.1039/D1TC01477C
11. Cuesta A., Aranda M. A. G., Sanz J., de la Torre Á. G., Losilla E. R. Mechanism of stabilization of dicalcium silicate solid solution with aluminium. Dalton Transactions. 2014. Vol. 43, No. 5. pp. 2176–2182. DOI: 10.1039/C3DT52194J
12. Oar-Arteta L., Wezendonk T., Sun X., Kapteijn F., Gascon J. Metal organic frameworks as precursors for the manufacture of advanced catalytic materials. Materials Chemistry Frontiers. 2017. Vol. 1, No. 9. pp. 1709–1745. DOI: 10.1039/C7QM00007C
13. Li P., Kim H., Kim K.-H., Kim J. et al. State-of-the-art anodes of potassium-ion batteries: synthesis, chemistry, and applications. Chemical Science. 2021. Vol. 12, No. 22. pp. 7623–7655. DOI: 10.1039/D0SC06894B
14. Su Z., Li L., Liu Z., Huang C. et al. Fabrication, microstructure, and hydration of nano β-Ca2SiO4 powder by co-precipitation method. Construction and Building Materials. 2021. Vol. 296. 123737. DOI: 10.1016/j.conbuil dmat.2021.123737
15. Krusenbaum A., Grätz S., Tigineh G. T., Borchardt L., Kim J. G. The mechanochemical synthesis of polymers. Chemical Society Reviews. 2022. Vol. 51, No. 7. pp. 2873–2905. DOI: 10.1039/D1CS01093J
16. Ali I., Peng C., Ye T., Naz I. Sorption of cationic malachite green dye on phytogenic magnetic nanoparticles functionalized by 3-marcaptopropanic acid. RSC Advances. 2018. Vol. 8, No. 16. pp. 8878–8897. DOI: 10.1039/C8RA00245B
17. Shao F., Zhuang Y., Ni J., Sheng J. et al. Comparison of the microstructural characteristics and electrical properties of plasma sprayed Al2O3 and Al2O3–Ca2SiO4 coatings immersed in deionized water. Surface and Coatings Technology. 2021. Vol. 422. 127530. DOI: 10.1016/j.surfcoat. 2021.127530
18. Hertel T., Pontikes Y. Geopolymers, inorganic polymers, alkali-activated materials and hybrid binders from bauxite residue (red mud) – putting things in perspective. Journal of Cleaner Production. 2020. Vol. 258. 120610. DOI: 10.1016/j.jclepro.2020.120610.
19. Liang S.-X., Zhang L.-C., Reichenberger S., Barcikowski S. Design and perspective of amorphous metal nanoparticles from laser synthesis and processing. Physical Chemistry Chemical Physics. 2021. Vol. 23, No. 19. pp. 11121–11154. DOI: 10.1039/D1CP00701G
20. Rangraz Y., Heravi M. M. Recent advances in metal-free heteroatomdoped carbon heterogonous catalysts. RSC Advances. 2021. Vol. 11, No. 38. pp. 23725–23778. DOI: 10.1039/D1RA03446D
21. Agrawal S., Rayapudi V., Dhawan N. Microwave reduction of red mud for recovery of iron values. Journal of Sustainable Metallurgy. 2018. Vol. 4, No. 4. pp. 427–436. DOI: 10.1007/s40831-018-0183-3
22. Rajaoalison H., Zlotkowski A., Rambolamanana G. Mechanical properties of sandstone using non-destructive method. Journal of Mining Institute. 2020. Vol. 241. 113. DOI: 10.31897/pmi.2020.1.113
23. Sharikov Yu. V., Sharikov F. Yu., Titov O. V. Optimal control of annealing during the preparation of aluminum hydroxide and cement clinker in tubular rotary kilns. Theoretical Foundations of Chemical Engineering. 2017. Vol. 51, No. 4. pp. 503–507. DOI: 10.1134/S0040579517030125
24. Zubkova O., Alexeev A., Polyanskiy A., Karapetyan K. et al. Complex processing of saponite waste from a diamond-mining enterprise. Applied Sciences. 2021. Vol. 11, No. 14. 6615. DOI: 10.3390/app11146615
25. Kogan V. E., Shakhparonova T. S. Chemistry as the basis for solving environmental issues. Journal of Mining Institute. 2017. Vol. 224. pp. 223–228. DOI: 10.18454/PMI.2017.2.223
26. Kudinova A. A., Poltoratckaya M. E., Gabdulkhakov R. R., Litvinova T. E., Rudko V. A. Parameters influence establishment of the petroleum coke genesis on the structure and properties of a highly porous carbon material obtained by activation of KOH. Journal of Porous Materials. 2022. Vol. 29, No. 5. pp. 1–18. DOI: 10.1007/s10934-022-01287-1

27. Smyshlyaeva K. I., Rudko V. A., Povarov V. G., Shaidulina A. A. et al. Influence of asphaltenes on the low-sulphur residual marine fuels’ stability. Journal of Marine Science and Engineering. 2021. Vol. 9. 1235.
28. Tanaka H. Viscoelastic phase separation in soft matter and foods. Faraday Discussions. 2012. Vol. 158. pp. 371–406. DOI: 10.1039/C2FD20028G
29. Carneiro J., Tobaldi D. M., Hajjaji W., Capela M. N. et al. Red mud as a substitute coloring agent for the hematite pigment. Ceramics International. 2018. Vol. 44, No. 4. pp. 4211–4219. DOI: 10.1016/j.ceramint.2017.11.225
30. Zhang J., Li S., Li Z., Liu C., Gao Y. Feasibility study of red mud for geopolymer preparation: effect of particle size fraction. Journal of Material Cycles and Waste Management. 2020. Vol. 22, No. 5. pp. 1328–1338. DOI: 10.1007/s10163-020-01023-4
31. Alkan G., Xakalashe B., Yagmurlu B., Kaussen F., Friedrich B. Conditioning of red mud for subsequent titanium and scandium recovery – a conceptual design study. World of Metallurgy. 2017. Vol. 70, No. 2. 8.
32. Bian R., Zhu J., Chen Y., Yu Y. et al. Resource recovery of wastewater treatment sludge: synthesis of a magnetic cancrinite adsorbent. RSC Advances. 2019. Vol. 9, No. 62. pp. 36248–36255. DOI: 10.1039/C9RA06940B
33. Guru S., Amritphale S. S., Mishra J., Joshi S. Multicomponent red mud-polyester composites for neutron shielding application. Materials Chemistry and Physics. 2019. Vol. 224. pp. 369–375. DOI: 10.1016/j.matchemphys.2018.12.039
34. Ris A. D., Sundurov A. V., Dubovikov O. A. Bauxite concentrate behaviour at the leaching stage in the Bayer process. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2019. Vol. 23, No. 2. pp. 395–403.
35. Bibanaeva S. A., Pasechnik L. A., Skachkov V. M., Sabirzyanov N. A. et al. A physico-chemical basis for additional leaching of red muds generated by alumina industry. Trudy Kolskogo nauchnogo tsentra RAN. 2018. Vol. 9, No. 2. pp. 818–821.
36. Seeking to find a balance: Annual report. RUSAL, 2021. Available at: https://rusal.ru/upload/iblock/91c/9bfpx677dtz6sv6x38r7to0zh37pv5cy.pdf

Language of full-text russian
Full content Buy
Back