Journals →  Цветные металлы →  2024 →  #2 →  Back

Композиционные материалы и многофункциональные покрытия
ArticleName Физико-химический процесс саморассыпания спека с получением оксида алюминия и γ–ортосиликата кальция
DOI 10.17580/tsm.2024.02.10
ArticleAuthor Лебедев А. Б., Бажин В. Ю., Жадовский И. Т.
ArticleAuthorData

Санкт-Петербургский горный университет императрицы Екатерины II, Санкт-Петербург, Россия

А. Б. Лебедев, научный сотрудник НЦ «Переработка ресурсов», канд. техн. наук, эл. почта: 2799957@mail.ru
В. Ю. Бажин, заведующий кафедрой металлургии, профессор, докт. техн. наук, эл. почта: bazhin-alfoil@mail.ru
И. Т. Жадовский, доцент кафедры общей и физической химии, канд. хим. наук, эл. почта: sergaur@mail.ru

Abstract

Явление полиморфизма ортосиликата кальция является объектом все более широких исследований, заменяя собой энергоемкий процесс дробления. Полиморфные β- и γ-превращения Ca2SiO4 происходят в процессе охлаждения спеков, содержащих соответствующие модификации ортосиликата или пироалюмината кальция, и последующего саморассыпания, что применяется в производстве глинозема. Продолжительность процесса должна быть ограничена оптимальным показателем. Для решения этой задачи изучен ортосиликат кальция, который встречается в модификациях α, α', β, γ. Дифференциальный термический анализ показал, что существуют 5 модификаций фаз: αα', α'', βγ. Подтверждено, что различия между β- и γ-фазами обусловлены расположением тетраэдров [SiO4]4+ относительно катионов Ca2+ в решетке ортоcиликата кальция. Структуры имеют разную симметрию и параметры решетки, и, соответственно, различающиеся физико-химические свойства. Стабильная модификация проходит при температурах 539–550 oC, имеет самую низкую свободную энергию. Представлена зависимость между величинами свободной энергии β- и γ-модификаций и температурой. Определено, что за 30 мин полностью завершается процесс образования новой фазы при 350 oC. Установлена температура саморассыпания чистого ортосиликата кальция (525 oC). Построена математическая модель снижения температуры. Установлено: чем меньше главное квантовое число Wn инородного катиона, его валентность и электроотрицательность и чем больше атомный радиус, тем ниже стабилизирующие свойства. Определен общий тепловой эффект с образованием белита — 100 273,86 Дж/моль. Тепловой эффект полиморфного превращения β → γ-Ca2SiO4 с саморассыпанием — на 5568,44 Дж/моль больше. Практическое значение этого фактора состоит в определении удельной поверхности саморассыпавшегося порошка и микроструктуры его зерен. Общий экономический эффект может составить до 8 млрд руб. в год. Быстрое охлаждение спека влечет за собой переохлаждение β-фазы, в результате саморассыпание происходит с содержанием 60 % белита и 30 % алюмината.

keywords β → γ-Ca2SiO4-превращения, энергетическое состояние, гранулы белита и алюмината, ортосиликат кальция, саморассыпаемость спека, фактор интенсивности
References

1. Vasilkova A. O., Vasilkov N. V., Khmelnitskaya O. D., Gazaleeva G. I. Processing of secondary gold-bearing materials: Analysis of the current status. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2021. Vol. 25, No. 1. pp. 97–107.
2. Sizyakov V. M., Brichkin V. N. On the role of calcium hydrocarboaluminates in nepheline processing technology optimization. Journal of Mining Institute. 2018. Vol. 231. pp. 292–298. DOI: 10.25515/PMI.2018.3.292
3. Sizyakov V. M., Litvinova T. E., Brichkin V. N., Fedorov A. T. Modern physico-chemical description of equilibria in the Na2O–Al2O3–H2O system and similar systems. Journal of Mining Institute. 2019. Vol. 237. pp. 298–306. DOI: 10.31897/PMI.2019.3.298
4. Piirainen V. Yu., Barinkova A. A. Development of composite materials based on red mud. Obogashchenie Rud. 2023. No. 3. P. 37–43.
5. Piirainen V. Yu., Mikhailov A. V., Barinkov V. M., Starovoitov V. N. The use of sludge-peat composition for the processing of alumina production waste. Obogashchenie Rud. 2022. No. 6. P. 51–58.
6. Pyagay I. N., Shaidulina A. A., Konoplin R. R., Artyushevskiy D. I. et al. Production of amorphous silicon dioxide derived from aluminum fluoride industrial waste and consideration of the possibility of its use as Al2O3 – SiO2 catalyst supports. Catalysts. 2022. Vol. 12, No. 2. pp. 1–13.
7. Karpova K. S., Karpov A. V. Solid-phase reduction of iron oxides in a laboratory environment. Sovremennye materialy, tekhnika i tekhnologii. 2018. No. 1. pp. 27–32.
8. Trushko V. L., Utkov V. A. Development of import subtituting technologies for increasing productivity of sintering machines and strength of agglome rates. Journal of Mining Institute. 2016. Vol. 221. pp. 675–680. DOI: 10.18454/pmi.2016.5.675
9. Ioannidi A., Oulego P., Collado S., Petala A. et al. Persulfate activation by modified red mud for the oxidation of antibiotic sulfamethoxazole in water. Journal of Environmental Management. 2020. Vol. 270. 110820. DOI: 10.1016/j.jenvman.2020.110820
10. Jia Y., Yang C., Chen X., Xue W. et al. A review on electrospun magnetic nanomaterials: methods, properties and applications. Journal of Materials Chemistry C. 2021. Vol. 9, No. 29. pp. 9042–9082. DOI: 10.1039/D1TC01477C
11. Cuesta A., Aranda M. A. G., Sanz J., de la Torre Á. G., Losilla E. R. Mechanism of stabilization of dicalcium silicate solid solution with aluminium. Dalton Transactions. 2014. Vol. 43, No. 5. pp. 2176–2182. DOI: 10.1039/C3DT52194J
12. Oar-Arteta L., Wezendonk T., Sun X., Kapteijn F., Gascon J. Metal organic frameworks as precursors for the manufacture of advanced catalytic materials. Materials Chemistry Frontiers. 2017. Vol. 1, No. 9. pp. 1709–1745. DOI: 10.1039/C7QM00007C
13. Li P., Kim H., Kim K.-H., Kim J. et al. State-of-the-art anodes of potassium-ion batteries: synthesis, chemistry, and applications. Chemical Science. 2021. Vol. 12, No. 22. pp. 7623–7655. DOI: 10.1039/D0SC06894B
14. Su Z., Li L., Liu Z., Huang C. et al. Fabrication, microstructure, and hydration of nano β-Ca2SiO4 powder by co-precipitation method. Construction and Building Materials. 2021. Vol. 296. 123737. DOI: 10.1016/j.conbuil dmat.2021.123737
15. Krusenbaum A., Grätz S., Tigineh G. T., Borchardt L., Kim J. G. The mechanochemical synthesis of polymers. Chemical Society Reviews. 2022. Vol. 51, No. 7. pp. 2873–2905. DOI: 10.1039/D1CS01093J
16. Ali I., Peng C., Ye T., Naz I. Sorption of cationic malachite green dye on phytogenic magnetic nanoparticles functionalized by 3-marcaptopropanic acid. RSC Advances. 2018. Vol. 8, No. 16. pp. 8878–8897. DOI: 10.1039/C8RA00245B
17. Shao F., Zhuang Y., Ni J., Sheng J. et al. Comparison of the microstructural characteristics and electrical properties of plasma sprayed Al2O3 and Al2O3–Ca2SiO4 coatings immersed in deionized water. Surface and Coatings Technology. 2021. Vol. 422. 127530. DOI: 10.1016/j.surfcoat. 2021.127530
18. Hertel T., Pontikes Y. Geopolymers, inorganic polymers, alkali-activated materials and hybrid binders from bauxite residue (red mud) – putting things in perspective. Journal of Cleaner Production. 2020. Vol. 258. 120610. DOI: 10.1016/j.jclepro.2020.120610.
19. Liang S.-X., Zhang L.-C., Reichenberger S., Barcikowski S. Design and perspective of amorphous metal nanoparticles from laser synthesis and processing. Physical Chemistry Chemical Physics. 2021. Vol. 23, No. 19. pp. 11121–11154. DOI: 10.1039/D1CP00701G
20. Rangraz Y., Heravi M. M. Recent advances in metal-free heteroatomdoped carbon heterogonous catalysts. RSC Advances. 2021. Vol. 11, No. 38. pp. 23725–23778. DOI: 10.1039/D1RA03446D
21. Agrawal S., Rayapudi V., Dhawan N. Microwave reduction of red mud for recovery of iron values. Journal of Sustainable Metallurgy. 2018. Vol. 4, No. 4. pp. 427–436. DOI: 10.1007/s40831-018-0183-3
22. Rajaoalison H., Zlotkowski A., Rambolamanana G. Mechanical properties of sandstone using non-destructive method. Journal of Mining Institute. 2020. Vol. 241. 113. DOI: 10.31897/pmi.2020.1.113
23. Sharikov Yu. V., Sharikov F. Yu., Titov O. V. Optimal control of annealing during the preparation of aluminum hydroxide and cement clinker in tubular rotary kilns. Theoretical Foundations of Chemical Engineering. 2017. Vol. 51, No. 4. pp. 503–507. DOI: 10.1134/S0040579517030125
24. Zubkova O., Alexeev A., Polyanskiy A., Karapetyan K. et al. Complex processing of saponite waste from a diamond-mining enterprise. Applied Sciences. 2021. Vol. 11, No. 14. 6615. DOI: 10.3390/app11146615
25. Kogan V. E., Shakhparonova T. S. Chemistry as the basis for solving environmental issues. Journal of Mining Institute. 2017. Vol. 224. pp. 223–228. DOI: 10.18454/PMI.2017.2.223
26. Kudinova A. A., Poltoratckaya M. E., Gabdulkhakov R. R., Litvinova T. E., Rudko V. A. Parameters influence establishment of the petroleum coke genesis on the structure and properties of a highly porous carbon material obtained by activation of KOH. Journal of Porous Materials. 2022. Vol. 29, No. 5. pp. 1–18. DOI: 10.1007/s10934-022-01287-1

27. Smyshlyaeva K. I., Rudko V. A., Povarov V. G., Shaidulina A. A. et al. Influence of asphaltenes on the low-sulphur residual marine fuels’ stability. Journal of Marine Science and Engineering. 2021. Vol. 9. 1235.
28. Tanaka H. Viscoelastic phase separation in soft matter and foods. Faraday Discussions. 2012. Vol. 158. pp. 371–406. DOI: 10.1039/C2FD20028G
29. Carneiro J., Tobaldi D. M., Hajjaji W., Capela M. N. et al. Red mud as a substitute coloring agent for the hematite pigment. Ceramics International. 2018. Vol. 44, No. 4. pp. 4211–4219. DOI: 10.1016/j.ceramint.2017.11.225
30. Zhang J., Li S., Li Z., Liu C., Gao Y. Feasibility study of red mud for geopolymer preparation: effect of particle size fraction. Journal of Material Cycles and Waste Management. 2020. Vol. 22, No. 5. pp. 1328–1338. DOI: 10.1007/s10163-020-01023-4
31. Alkan G., Xakalashe B., Yagmurlu B., Kaussen F., Friedrich B. Conditioning of red mud for subsequent titanium and scandium recovery – a conceptual design study. World of Metallurgy. 2017. Vol. 70, No. 2. 8.
32. Bian R., Zhu J., Chen Y., Yu Y. et al. Resource recovery of wastewater treatment sludge: synthesis of a magnetic cancrinite adsorbent. RSC Advances. 2019. Vol. 9, No. 62. pp. 36248–36255. DOI: 10.1039/C9RA06940B
33. Guru S., Amritphale S. S., Mishra J., Joshi S. Multicomponent red mud-polyester composites for neutron shielding application. Materials Chemistry and Physics. 2019. Vol. 224. pp. 369–375. DOI: 10.1016/j.matchemphys.2018.12.039
34. Ris A. D., Sundurov A. V., Dubovikov O. A. Bauxite concentrate behaviour at the leaching stage in the Bayer process. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2019. Vol. 23, No. 2. pp. 395–403.
35. Bibanaeva S. A., Pasechnik L. A., Skachkov V. M., Sabirzyanov N. A. et al. A physico-chemical basis for additional leaching of red muds generated by alumina industry. Trudy Kolskogo nauchnogo tsentra RAN. 2018. Vol. 9, No. 2. pp. 818–821.
36. Seeking to find a balance: Annual report. RUSAL, 2021. Available at: https://rusal.ru/upload/iblock/91c/9bfpx677dtz6sv6x38r7to0zh37pv5cy.pdf

Language of full-text russian
Full content Buy
Back