Реферат |
The article examines the sorption of palladium ions (II) and Non-ferrous metal ions – copper and nickel, usually present in chloride technological solutions, on silicas of the Silochrom (S) and Davisil (D) brands, chemically modified with N- and S-containing organic compounds. It was determined that under static conditions the time to achieve constant sorption values is 2–5 minutes. It has been established that an increase in the concentration of HCl in solutions leads to a significant decrease in the sorption of palladium(II) and Non-ferrous metals ions for all types of sorbents. The influence of the salt background on the sorption of palladium(II) is insignificant. Based on a set of data, including studies of the dependence of the palladium ions(II) sorption by nitrogen-containing sorbents on various conditions, the construction of sorption isotherms and the study of phases of sorbents saturated with palladium ions using X-ray photoelectron spectroscopy (XPS), it was concluded that the sorption of Pd (II) occurs due to electrostatic interaction with protonated nitrogen atoms of the functional groups of sorbents, as well as due to donor-acceptor binding of nitrogen atoms with Pd ions(II). It was concluded that, due to the low sorption values of the studied ions by nitrogen-containing silicas, their use is inappropriate, and for the isolation of palladium from solutions of complex composition, it is recommended to use highly selective sulfur-containing sorbents, in particular silica modified with thiosalicylic acid (TSA-D). It has been established that at the stage of sorption by this sorbent in a dynamic mode, joint sorption of Pd(II), Cu(II), Ni(II) ions from model solutions occurs, and 99.99% of palladium passes into the sorbent phase. At the stage of washing with 0.1 mol/l HCl, the remaining initial solution is removed and copper(II) and nickel(II) ions are desorbed. When eluting with an ammonia buffer solution (pH =10), an eluate is formed containing, % (wt.): for the Pd(II) – Cu(II) pair (in terms of metal) > 99.97 Pd and < 0.03 Cu(II), and for the Pd(II) – Ni(II) system – 99.99 Pd and <0.01 Ni. |
Библиографический список |
1. Lee J. C., Kurniawan Hong H. J. et al. Separation of platinum, palladium and rhodium from aqueous solutions using ion exchange resin: A review. Separation and Purification Technology. 2020. No. 246. 116896. DOI: 10.1016/j.seppur.2020.116896 2. Ehrliсh G. V., Buslaeva T. M., Maryutina T. A. Trends in sorption recovery of platinum metals: a critical survey. Russian Journal of Inorganic Chemistry. 2017. Vol. 62, No. 14. pp. 1797–1818. DOI: 10.1134/S0036023617140030 3. Lisichkin G. V., Olenin A. Y. Chemically modified silica in sorption-instrumental analytical methods. Russ. J. Gen. Chem. 2021. Vol. 91. pp. 870–889. DOI: 10.1134/S1070363221050182 4. Myasoedova G. V., Мokhodoeva O. B., Kubrakova I. V. Trends in sorption preconcentration combined with noble metal determination. Analytical Sciences. 2007. Vol. 23, No. 9. pp. 1031–1039. DOI: 10.2116/analsci.23.1031 5. Petrov G. V., Boduen A. Ya., Fokina S. B., Zotova I. E. Behaviour of iridium and ruthenium complexes during sorption in sulphuric acid medium. Tsvetnye Metally. 2020. No. 3. pp. 39–42. 6. Egorov S. A., Blokhin A. A., Murashkin Yu. V., Tatarnikov A. V. Extraction of rhodium from multicomponent chloride solutions by sorption. Tsvetnye Metally. 2020. No. 3. pp. 74–78. 7. Buslaeva T. M., Volchkova E. V., Boryagina I. V. Sorption of rhodium(III) chloride complexes by silica chemically modified with γ-aminopropyltriethoxysisilane groups. Tsvetnye Metally. 2022. No. 6. pp. 37–44. 8. Asere G., Mincke S., Folens K. et al. Dialdehyde carboxymethyl cellulose cross-linked chitosan for the recovery of palladium and platinum from aqueous solution. React. and Functional Polymers. 2019. Vol. 141. pp. 145–154. DOI: 10.1016/j.reactfunctpolym.2019.05.008 9. He L., Liu Y., Shi P. et al. Energy harvesting and Pd(II) sorption based on organic-inorganic hybrid perovscites. ACS Appl. Mater. Interfaces. 2020. Vol. 12, No. 48. pp. 53799–53806. DOI: 10.1021/acsami.0c16180 10. Li H., Wu F., Pan Y. et al. Selective capture of palladium(II) from highly acidic solution by proline-valinol amide functionalized silica nanoparticles. Colloids and Surfaces A: Physicochem and Eng. Aspects. 2022. Vol. 648. 129374. DOI: 10.1016/j.colsurfa.2022.129374 11. Sato T., Abe S., Ito S., Abo T. Silk fibroin fiber for selective palladium adsorption: Kinetic, isothermal and thermodynamic properties. J. of Envirom. Chem. Eng. 2019. Vol. 7, No. 2. 102958. DOI: 10.1016/j.jece.2019.102958Get 12. Dobrzynska J., Dobrowolski R., Olchowski R. et al. Palladium adsorption and preconcentration onto thiol- and amine-functionalized mesoporous silicas with respect to analytical applications. Microporous and Mesoporous Mater. 2019. Vol. 279. pp. 127–137. DOI: 10.1016/j.micromeso.2018.07.038
13. Amorim D., Costa B., Martinez D. Biosorption of Pd(II) from aqueous solution using leaves of moringa oleifera as a low-cost biosorbent. Bioactivitie. 2023. Vol. 1, No. 1. DOI: 10.47352/bioactivities.2963-654X.181 14. Losev V. N., Elsufiev E. V., Buyko O. V., Trofimchuk A. K. et al. Extraction of precious metals from industrial solutions by the pine (Pinus sylvestris) sawdust-based biosorbent modified with thiourea groups. Hydrometallurgy. 2018. Vol. 176. pp. 118–128. DOI: 10.1016/j.hydromet.2018.01.016 15. Haribandhu Chaudhuri, Che-Ryong Lim, Yeoung-Sang Yun. Polyethylenimine functionalized sulfur-containing POSS-based dendritic adsorbent for highly efficient and selective capturing of precious metal ions. Desalination. 2023. Vol. 566. 116925. DOI: 10.1016/j.desal.2023.116925 16. Shuo Lin, John Kwame Bediako, Chul-Woong Cho, Myung-Hee Song et al. Selective adsorption of Pd(II) over interfering metal ions (Co(II), Ni(II), Pt(IV)) from acidic aqueous phase by metal-organic frameworks. Chemical Engineering Journal. 2018. Vol. 345. pp. 337–344. DOI: 10.1016/j.cej.2018.03.173 17. Abd-Elhamid A. I., Abu Elgoud E. M., Aly H. F. Adsorption of palladium from chloride aqueous solution using silica alginate nanomaterial. International Journal of Biological Macromolecules. 2023. Vol. 253. 126754. DOI: 10.1016/j.ijbiomac.2023.126754 18. Perez Jeffrey Paulo H., Folens Karel, Leus Karen et al. Progress in hydro metallurgical technologies to recover critical raw materials and precious metals from low-concentrated streams. Resources, Conservation & Recycling. 2019. Vol. 142. pp. 177–188. DOI: 10.1016/j.resconrec.2018.11.029 19. Zhenxiong Ye, Huidi Zhang, Xujie Chen, Lifeng Chen et al. Silicasupported thiourea resin for efficient recovery of Pd(II): Batch, column and mechanism study. Journal of Cleaner Production. 2023. Vol. 423. 138684. DOI: 10.1016/j.jclepro.2023.138684 20. Kononova O. N., Duba E. V., Shnayder N. I., Pozdnyakova I. A. Sorption recovery of palladium (II) and platinum (IV) from hydrochloric acid solutions. Journal of Siberian Federal University. Chemistry. 2018. Vol. 11. pp. 6–17. DOI: 10.17516/1998-2836-0054 21. Rzelewska M., Regel-Rosocka M. Wastes generated by automotive industry – Spent automotive catalysts. Physical Sciences Reviews. 2018. Vol. 3, Iss. 8. DOI: 10.1515/psr-2018-0021 22. Mirzaev N. A., Marinova A. P., Mammadov Kh. F., Temerbulatova N. T. et al. Sorption of metal ions on an anion-exchange resin in an ammonium acetate solution. Russian Journal of Physical Chemistry A. 2020. Vol. 94. pp. 1190–1194. DOI: 10.1134/S0036024420060175 23. Sengupta S., Sahoo M., Sravani V. V. et al. Highly efficient post-synthetically modified UiO-66 MOF for the extraction of Pd(ii) from aqueous solutions: experimental and theoretical studies. New Journal Chemistry. 2023. Vol. 47. pp. 14921–14932. DOI: 10.1039/D3NJ02770H 24. Goc K., Benke G., Kluczka J., Pianowska K. et al. Influence of static sorption parameters on the recovery of precious metals from wastes of the refining processes. Ind. Eng. Chem. Res. 2023. Vol. 62. pp. 8163–8173. DOI: 10.1021/acs.iecr.3c00734 25. Hubicki Z., Zinkowska K., Wójcik G. A new impregnated adsorbent for noble metal ion sorption. Molecules. 2023. Vol. 28, No. 16. 6040. DOI: 10.3390/molecules28166040 26. Izatt S. R., Izatt N. E., Bruening R. L., Dale J. B. Achievements of molecular recognition technology in the hydrometallurgy. Tsvetnye Metally. 2011. No. 3. pp. 55–61. 27. Brauer G. Manual of inorganic synthesis in 6 volumes. Vol. 5. Moscow : Mir, 1985. 360 p. 28. Bodnar N. M., Buslaeva T. M., Ehrlich G. V. et al. Sorption of iridium complexes with supported ionic liquids. Russ. Journal of Inorganic Chemistry. 2021. Vol. 66. No. 4. pp. 586–593. DOI: 10.1134/S0036023621040045 29. Buslaeva T. M., Ehrlich G. V., Volchkova E. V. et al. Complexation during sorption of palladium(II) ions by chemically modified silica. Russ. Journal of Inorganic Chemistry. 2022. Vol. 67, No. 8. pp. 1191–1202. DOI: 10.1134/S0036023622080058 30. Buslaeva T. M., Bodnar N. M., Gromov S. P. et al. Role of macrocyclic effect in complex formation of palladium(II) with ligands anchored on a solid support. Russ. Chem. Bull. 2018. Vol. 67. pp. 1190–1195. DOI: 10.1007/s11172-018-2200-x 31.Ehrlikh G. V., Buslaeva T. M., Maryutina T. A. et al. Sorbent and its use for extraction of palladium ions. Patent RF, No. 2698656. Applied: 25.02.2019. Published: 28.08.2019. 32. Ehrlikh G. V., Buslaeva T. M., Maryutina T. A. et al. Method for selective extraction of platinum ions from chloride solutions. Patent RF, No. 2703011. Applied: 30.04.2019. Published: 15.10.2019. 33. Boryagina I. V., Volchkova E. V., Buslaeva T. M., Vasilyeva M. V. et al. Sorption of the chloride complexes of palladium and platinum by the chemically modified silica. Tsvetnye Metally. 2012. No. 5. pp. 59–64. 34. Nefedov V. I. X-ray electron spectroscopy of chemical compounds. Reference book. Moscow : Khimiya, 1984. 255 p. 35. Lisitsyn A. S., Parmon V. N., Duplyakin V. K., Likholobov V. A. Current problems and prospects for the development of research in the field of supported palladium catalysts. Rossiyskiy khimicheskiy zhurnal. 2006. Vol. 50, No. 4. pp. 140–153. 36. Diaz-Aunon J. A., Garcia-Martinez J., Roman-Martinez M. C., Salinas-Martinez de Lecea C. Highly active catalyst from [PdCl2(NH2(CH2)12CH3)2] on NH4ZSM-5. Catalysis Letters. 2001. Vol. 76, No. 1-2. pp. 41–43. 37. Ivanova A. S., Slavinskaya E. M., Stonkus O. A. et al. Low-temperature oxidation of carbon monoxide on (Mn1 – xMx)O2 (M = Co, Pd) catalysts. Kinetika i kataliz. 2013. Vol. 54, No. 1. pp. 85–99. DOI: 10.7868/S0453881113010085 38. Boronin A. I., Slavinskaya E. M., Danilova I. G. et al. Investigation of palladium interaction with cerium oxide and its state in catalysts for low-temperature CO oxidation. Catalysis Today. 2009. No. 144. pp. 201–211. DOI: 10.1016j.cattod.2009.01.035 39. Orysyk S. I., Bon V. V., Zholob O. A. et al. Rhodium(III), Palladium(II), and Platinum(II) complexes with 2-(2-hydroxybenzoyl)-N-methylhydrazinecarbothioamide: Syntheses, structures, and spectral characteristics. Russian Journal of Coordination Chemistry. 2014. Vol. 40. No. 3. pp. 160–170. DOI: 10.1134S1070328414030063 40. L’Argentiere P. C., Liprandi D. A., Cagnola E. A., Figoli N. S. [PdCl2(NH2(CH2)12CH3)2] supported on γ-Al2O3 as catalyst for selective hydrogenation. Catalysis Letters. 1997. Vol. 44. pp. 101–107. DOI: 10.1023/A:1018912705907 41. Gmelin handbook of inorganic chemistry. Palladium. Berlin, Heidelberg, New York, London, Paris : Springer-Verlag, 1989. 354 р. |