Journals →  Gornyi Zhurnal →  2024 →  #1 →  Back

APPLIED RESEARCHES
ArticleName Construction of multivariate block geomechanical model in tNavigator software: A case study
DOI 10.17580/gzh.2024.01.16
ArticleAuthor Degterev A. Yu., Kuzmin S. V.
ArticleAuthorData

Rock Flow Dynamics, Moscow, Russia

A. Yu. Degterev, Leading Geologist, Candidate of Engineering Sciences, anton.degterev@rfdyn.ru

 

Siberian Coal Energy Company, Moscow, Russia
S. V. Kuzmin, Head of Geomechanics at Mining Planning Management, Candidate of Engineering Sciences

Abstract

The article presents a case study of multivariate block geomechanical modeling in the domestic software system tNavigator. The concept of multivariate modeling in Workflow (graph of modeling) allows automation of model updating and construction of sister models. The prerequisites of transition from the deterministic to multivariate model and the main factors which earlier prevented the use of the technology in the mining industry are listed. The described tools of the spatial data interpolation in the conditions of statistical instability ensures the automated multivariate modeling. The technology of the multivariate block geomechanical modeling is demonstrated as a case study of a mineral deposit. All major stages of operation, tools and application of the obtained results are discussed. The tools of the automated interpolation of geomechanical characteristics in the conditions of statistical instability when the geostatistical approach is inapplicable are described. The automated prediction without delineation of domains and other manual manipulations with data as well as concordant automated prediction of a number of parameters are illustrated. An example of lithological modeling is given, and the possibility of realistic prediction of geomechanical characteristics directly, without lithological modeling is demonstrated. The authors describe the methods of the initial data analysis and the modeling data control, which allow substantiation of the model correctness. The principal points are that the model is updated with new data automatically without extra labor cost and that the model is multivariate, which enables stability assessment and any parameter prediction for any block of the model.

keywords Block geomechanical model, multivariate modeling, uncertainty analysis
References

1. Haldorsen H. H., Damsleth E. Stochastic modeling (includes associated papers 21255 and 21299). Journal of Petroleum Technology. 1990. Vol. 42, Iss. 4. pp. 404–412.
2. Ding L. Y., Mehra R. K., Donnelly J. K. Stochastic modeling in reservoir simulation. SPE Reservoir Engineering. 1992. Vol. 7(01). pp. 98–106.
3. Journel A. G., Gundeso R., Gringarten E., Yao T. Stochastic modelling of a fluvial reservoir: A comparative review of algorithms. Journal of Petroleum Science and Engineering. 1998. Vol. 21, Iss. 1-2. pp. 95–121.
4. Janele P. T., Galvin T. J., Kisucky M. J. Integrated asset management: Work process and data flow models. SPE Asia Pacific Conference on Integrated Modelling for Asset Management. Kuala Lumpur, 1998. DOI: 10.2118/39712-MS
5. Massonnat G. J. Can we sample the complete geological uncertainty space in reservoir-modeling uncertainty estimates? SPE Journal. 2000. Vol. 5, No. 1. pp. 46–59.
6. Charles T., Guemene J. M., Corre B., Vincent G., Dubrule O. Experience with the quantification of subsurface uncertainties. SPE Asia Pacific Oil and Gas Conference and Exhibition. Jakarta, 2001. DOI: 10.2118/68703-MS
7. Vanegas J. W., Cunha J. C. S., Cunha L. B. Uncertainty assessment using experimental design and risk analysis techniques, applied to offshore heavy oil recovery. SPE International Thermal Operations and Heavy Oil Symposium. Calgary, 2005. DOI: 10.2118/97917-MS
8. Dehghani K., Jenkins S., Fischer D. J., Skalinski M. Application of integrated reservoir studies and techniques to estimate oil volumes and recovery—Tengiz Field, Republic of Kazakhstan. SPE Reservoir Evaluation & Engineering. 2008. Vol. 11, No. 2. pp. 362–378.
9. Singh V., Hegazy M., Fontanelli L. Assessment of reservoir uncertainties for development evaluation and risk analysis. The Leading Edge. 2009. Vol. 28, Iss. 3. pp. 272–282.
10. Arzhilovskaya N. G., Vasiliev M. O., Druchin V. S., Kovrizhnykh O. A., Muzychenko A. A. Uncertainty analysis of a geological model illustrated by Svobodnoe field. Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy. 2013. No. 9. pp. 60–65.
11. Putilov I. S., Potekhin D. V., Galkin V. I. Multiple 3d modelling with quality surveillance of realizations to increase reliability of geological models. Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy. 2015. No. 10. pp. 17–20.
12. Alymova M. V. Multivariate modeling 3d structure deposits of hydrocarbons deposits to improve the reliability assessment of their geological oil reserves and reducing risks associated with exploration work. Vostochno-Evropeyskiy nauchnyi zhurnal. 2016. Vol. 8, No. 3. pp. 109–114.
13. Fedorov A. E., Amineva A. A., Dilmuhametov I. R., Krasnov V. A., Sergeychev A. V. et al. Analysis of geological heterogeneity in geological stochastic modeling. Neftyanoe khozyaqstvo. 2019. No. 9. pp. 24–28.
14. Martynov A. S. The use of the structural uncertainty procedures in geological modeling to estimate exploratory and production drilling. Problemy razrabotki mestorozhdeniy uglevodorodnykh i rudnykh poleznykh iskopaemykh. 2022. Vol. 1. pp. 83–88.
15. Potapov D. V., Efremova E. I. Analysis of geological risks at the stage of reserves assessment in order to increase the asset development efficiency. Neftegazomaya geologiya. Teoriya i praktika. 2023. Vol. 18, No. 1.
16. Degterev A. Yu. Prospects for the use of multivariate modeling for calculating reserves and optimizing exploration work. Geologiya i nedropolzovanie. 2023. No. 2(12). pp. 55–68.
17. Hydrocarbon resources control. Version 1.01. 2018. Available at: https://www.spe.org/industry/docs/PRMgmtSystem_V1.01_RUS-FINAL.pdf (accessed: 15.06.2023).
18. Guidelines for Application of the Petroleum Resources Management System. 2011. Available at: https://www.spe.org/industry/docs/PRMS_Guidelines_Nov2011.pdf (accessed: 15.06.2023).
19. Guidelines on content and regulations for the state expertise materials on feasibility study and appraisal of solid mineral resources using block modeling of deposits of different morphology. Moscow, 2015.
20. Degterev A. Yu. The hypothesis of stationarity in geostatistics and its influence on the reliability of the created models. Geomodel 2021 : Proceedings of the 23nd Conference on Oil and Gas Geological Exploration and Development. Gelendzhik, 2021. DOI: 10.3997/2214-4609.202157092
21. Degterev A. Yu. Geological Modeling under Statistical Uncertainty—Geobaikal 2022 : The 7th Conference Proceedings. Irkutsk, 2023.
22. Degterev A. Yu., Bondarev A. V., Topchiy M. S. The use of the modern statistical certainty checking tools : A case study of Groningen deposit. Geomodel 2023 : The 25th Conference on Oil and Gas Geological Exploration and Recovery. Gelendzhik, 2023.
23. Degterev A. Yu. Amazonas – Stochastic Method of Modeling Geological Systems with Arbitrary Distribution of Properties, Including Statistically Unsteady Ones, Based on Non-Parametric Statistics. Geomodel 2019 : Proceedings of the 21st Conference on Oil and Gas Geological Exploration and Development. Gelendzhik, 2019. DOI: 10.3997/2214-4609.201950029

24. Degterev A. Yu. Multivariate spatial temporal model of gas dynamic in underground gas storage based on saturation parameter from well logging data. SPE Russian Petroleum Technology Conference. 2020. DOI: 10.2118/201952-MS
25. Degterev A., Bondarev A., Topchii M. Improvement possibilities for the open geological model of the Groningen Field. SPE Reservoir Characterisation and Simulation Conference and Exhibition. Abu Dhabi, 2023.

Language of full-text russian
Full content Buy
Back