Journals →  Eurasian mining →  2023 →  #2 →  Back

PHYSICS OF ROCKS AND PROCESSES
ArticleName Spatial distribution of blast-triggered seismic events: a case-study of the Khibiny Massif
DOI 10.17580/em.2023.02.07
ArticleAuthor Motorin A. Yu., Baranov S. V., Shebalin P. N.
ArticleAuthorData

Kola Branch of the Geophysical Survey of the Russian Academy of Sciences, Apatity, Russia1 ; Kirovsk Branch of Apatit, Kirovsk, Russia2

Motorin A. Yu.1,2, Junior Researcher, Senior Geophysicist

 

Kirovsk Branch of Apatit, Kirovsk, Russia

Baranov S. V., Chief Researcher, Doctor of Physical and Mathematical Sciences, bars.vl@gmail.com

 

Kirovsk Branch of Apatit, Kirovsk, Russia1 ; Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia2

Shebalin P. N.1,2, Director, Doctor of Physical and Mathematical Sciences, Corresponding Member of RAS

Abstract

The paper considers spatial distribution of seismic events triggered by blasts during mineral mining in the Khibiny Massif. The subject of the study is the production blasts and seismic events recorded by the seismic monitoring network of Kirovsk Branch of Apatit in 1996–2020. The chains of seismic events triggered by blasts were identified using the nearest-neighbor method. The studies prove that earthquake-to-blast distances averagely obey an exponential distribution independent of the triggering blast magnitudes. The model of the maximal distances from a triggering blast hypocenter to the expected aftershocks with a given probability is constructed in the study. The model agrees with the actual data. The recommendations on using the mode are substantiated from the analysis of the error diagrams.

The study includes results obtained under the state contract between the Ministry of Science and Higher Education of the Russian Federation and the Geophysical Survey of the Russian Academy of Sciences, Contract No. 075-01471-22.

keywords Induced seismicity, production blasts, aftershocks, exponential distribution, aftershock domain, error diagram
References

1. Baranov S. V., Zhukova S. A., Korchak P. A., Shebalin P. N. Seismic productivity of blasts: A case-study of the Khibiny Massif. Eurasian Mining. 2020. No. 2. pp. 14–18.
2. Baranov S. V., Motorin A. Yu., Shebalin P. N. Spatial distribution of triggered earthquakes in the conditions of mining-induced seismicity. Izvestiya. Physics of the Solid Earth. 2021. Vol. 57, No. 4. pp. 520–528.
3. Felzer K. R., Brodsky E. E. Decay of aftershock density with distance indicates triggering by dynamic stress. Nature. 2006. Vol. 441, No. 7094. pp. 735–738.
4. Shebalin P. N., Narteau C., Baranov S. V. Earthquake productivity law. Geophysical Journal International. 2020. Vol. 222, Iss. 2. pp. 1264–1269.
5. Baranov S. V., Zhukova S. A., Korchak P. A., Shebalin P. N. Productivity of mining-induced seismicity. Izvestiya. Physics of the Solid Earth. 2020. Vol. 56, Iss. 3. pp. 326–336.
6. Nivin V. A. Occurrence forms, composition, distribution, origin and potential hazard of natural hydrogen-hydrocarbon gases in ore deposits of the Khibiny and Lovozero Massifs: A Review. Minerals. 2019. Vol. 9, Iss. 9. DOI: 10.3390/min9090535
7. Rebetsky Yu. L., Sim L. A., Kozyrev A. A. Possible mechanism of horizontal overpressure generation of the Khibiny, Lovozero, and Kovdor Ore Clusters on the Kola Peninsula. Geology of Ore Deposits. 2017. Vol. 59. pp. 265–280.
8. Shabarov A. N., Kuranov A. D. Kiselev V. A. Assessing the zones of tectonic fault influence on dynamic rock pressure manifestation at Khibiny deposits of apatite-nepheline ores. Eurasian Mining. 2021. No. 2. pp. 3–7.
9. Kremenetskaya E. O., Trjapitsin V. M. Induced seismicity in the Khibiny Massif (Kola Peninsula). Pure and Applied Geophysics. 1995. Vol. 145. pp. 29–37.
10. Adushkin V. V., Spivak A. A. Geomechanics of Large-Scale Blasts. Moscow : Nedra, 1993. 319 p.
11. Adushkin V. V. Blasting-induced seismicity in the European part of Russia. Izvestiya. Physics of the Solid Earth. 2013. Vol. 49. pp. 258–277.
12. Kocharyan G. G., Kulikov V. I., Pavlov D. V. Impact of massive blasts on stability of tectonic faults. Journal of Mining Science. 2019. Vol. 55, No. 6. pp. 905–913.
13. Kozyrev A. A., Semenova I. E., Zhuravleva O. G., Panteleev A. V. hypothesis of strong seismic event origin in Rasvumchorr mine on January 9, 2018. GIAB. 2018. No. 12. pp. 74–83.
14. Gospodinov D., Dineva S., Dahnér-Lindkvist C. On the applicability of the RETAS model for forecasting aftershock probability in underground mines (Kiirunavaara Mine, Sweden). Journal of Seismology. 2020. Vol. 26. pp. 1023–1037.
15. Woodward K., Wesseloo J. Observed spatial and temporal behaviour of seismic rock mass response to blasting. Journal of the Southern African Institute of Mining and Metallurgy. 2015. Vol. 115, Iss. 11. pp. 1045–1056.
16. Dokht R. M. H., Smith B., Kao H., Visser R., Hutchinson J. Reactivation of an intraplate fault by mine-blasting events: Implications to regional seismic hazard in Western Canada. Journal of Geophysical Research: Solid Earth. 2020. Vol. 125, Iss. 6. DOI: 10.1029/2020JB019
17. Korchak P. A.., Zhukova S. A., Menshikov P. Yu. Seismic monitoring build-up and development in the production activity zone of Apatit JSC. Gornyi Zhurnal. 2014. No. 10. pp. 42–46.
18. Rautian T. G. Earthquake Energy. Seismic Survey Methods. Moscow : AN SSSR, 1960. pp. 75–114.
19. Zaliapin I., Ben-Zion Y. Earthquake declustering using the nearest-neighbor approach in space-time-magnitude domain. Journal of Geophysical Research: Solid Earth. 2020. Vol. 125, Iss. 4. DOI: 10.1029/2018JB017120
20. Bayliss K., Naylor M., Main I. G. Probabilistic identification of earthquake clusters using rescaled nearest neighbor distance networks. Geophysical Journal International. 2019. Vol. 217, Iss. 1. pp. 487–503.
21. Wiemer S., Wyss M. Minimum magnitude of complete reporting in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bulletin of the Seismological Society of America. 2000. Vol. 90, Iss. 4. pp. 859–869.
22. Sinegubov V. Yu., Maksimov A. B., Streletskyi A. V. Ivanov Yu. S. Mining Safety under Conditions of Rockburst Hazard (Underground Mining at Apatite–Nepheline Deposits of Kirovsk Branch of Apatit: Kukisvumchorr, Yukspor, Apatite Circus, Rasvumchorr Plateau): Guidance. Kirovsk : Teleset, 2021. 96 p.
23. Kozyrev A. A., Panin V. I., Semenova I. E., Rybin V. V. Geomechanical support of mining operations in mines of the Murmansk Region. Gornyi Zhurnal. 2019. No. 6. pp. 45–50.
24. Smirnov V. B., Ponomarev A. V. Physics of Transient Seismic Modes. Moscow : RAS, 2020. 412 p.
25. Shcherbakov R., Zhuang J., Ogata Y. Constraining the magnitude of the largest event in a foreshock–main shock–aftershock sequence. Geophysical Journal International. 2018. Vol. 212, Iss. 1. pp. 1–13.
26. Molchan G. Space–time earthquake prediction: The error diagrams. Pure and Applied Geophysics. 2010. Vol. 167. DOI: 10.1007/s00024-010-0087-z
27. Zechar J. D., Jordan T. H. Testing alarm-based earthquake predictions. Geophysical Journal International. 2008. Vol. 172, Iss. 2. pp. 715–724.
28. Baranov S. V., Shebalin P. N. Forecasting aftershock activity: 2. Estimating the area prone to strong aftershocks. Izvestiya, Physics of the Solid Earth. 2017. Vol. 53. pp. 366–384.
29. Baranov S., Narteau C., Shebalin P. Modeling and prediction of aftershock activity. Surveys in Geophysics. 2022. Vol. 43. pp. 437–481.

Full content Spatial distribution of blast-triggered seismic events: a case-study of the Khibiny Massif
Back