Journals →  Eurasian mining →  2023 →  #2 →  Back

MINERAL GEOLOGY AND EXPLORATION
ArticleName Geochemistry and petrogenesis of Syrostan granitoid intrusions in the Southern Urals
DOI 10.17580/em.2023.02.02
ArticleAuthor Ibrahim M. A. E., Kotelnikov A. E., Georgievskiy A. F., Ibrahim S. A.
ArticleAuthorData

Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

Ibrahim M. A. E., Post-Graduate Student, mohammedelsharif7@gmail.com
Kotelnikov A. E., Associate Professor, Head of Department, Candidate of Geological and Mineralogical Sciences
Georgievskiy A. F., Associate Professor, Doctor of Geological and Mineralogical Sciences

 

University of Khartoum, Khartoum, Sudan
Ibrahim S. A., Head of Department, Candidate of Geological and Mineralogical Sciences

Abstract

The article characterizes geochemistry and petrogenesis of granitoids of the Syrostan Massif located southwest of the town of Miass, in the zone of the main deep fault in the Urals. The geochemistry of the collected samples from Syrostan was analyzed using ICP-MS and the X-ray fluorescence. Granite is rich in silicon oxide SiO2 at its concentrations from 59.54 to 76.14 wt.%. The rocks are from metaluminous to peraluminous and belong to the high-K calc-alkaline to weakly calc-alkaline series; granite is type I and has A/CNK < 1. The test samples feature the higher content of LREE as compared with HREE, the ratios (La / Sm)N from 3.5 to 6.5 and (Gd /Yb)N from 1.25 to 2.8, and the negative Eu anomaly. The revealed negative Nb anomalies and the ratio Nb/Ta (8–16) <17 point at depletion of mantle melts. These results can be reflective of the granite formation in the tectonic environment of the volcanic arc. Understanding of the petrogenesis of granitoids in the Syrostan Massif can help predict commercial accumulations of rare metals in it.

The study was supported within the framework of the Strategic Academic Leadership Program of RUDN University.

keywords Syrostan Massif, geochemistry, high alkaline granites, type I granite, continental crust, depleted mantle, volcanic arc, ICP-MS
References

1. Xie L., Liu Y., Wang R., Hu H., Che X. et al. Li–Nb–Ta mineralization in the Jurassic Yifeng granite-aplite intrusion within the Neoproterozoic Jiuling batholith, south China: A fluid-rich and quenching ore-forming process. Journal of Asian Earth Sciences. 2019. Vol. 185. DOI: 10.1016/j.jseaes.2019.104047
2. Makagonov E. P., Muftahov V. A. Rare-earth and rare-metal mineralization in late granite of Syrostan massif (Southern Urals). Lithosfere. 2015. No. 2. pp. 121–132.
3. Fershtater G. B., Paleozoic Intrusive Magmatism of the Middle and South Urals. Yekaterinburg : UB RAS, 2013. 368 p.
4. Makaganov E. P., Muftahov V. A. Rare metals of the Syrostan Massif granitoids South Urals. South Ural State University’s Science — The 67th Conference Proceedings. Chelyabinsl : Izdatelskyi centr YuURGU, 2015. pp. 430–437.
5. Georgievskiy A. F., Bugina V. M., Kotelnikov A. E., Georgievskiy A. A., Mahinja E. et al. Vein-rock in the Dark kingdom Marble Deposit (South Ural) and their Possible Connection with Gold Ore Mineralization. International Science and Technology Conference on Earth Sciences–2020. Vladivostok : IOP Publishing Ltd, 2021. DOI: 10.1088/1755-1315/666/2/022024
6. Bea F., Fershtater G. B., Montero P., Smirnov V. N., Molina J. F. Deformation-driven differentiation of granitic magma: The Stepninsk pluton of the Uralides, Russia. Lithos. 2005. Vol. 81, No. 1–4. pp. 209–233.
7. Montero P., Bea F., Gerdes A., Fershtater G., Zinkova E. et al. Single-zircon evaporation ages and Rb-Sr dating of four major Variscan batholiths of the Urals A perspective on the timing of deformation and granite generation. Tectonophysics. 2000. Vol. 317, No. 1–2. pp. 93–108.
8. Udoratina O. V., Kulikova K. V., Shuyskiy A. S., Sobolevа A. A., Andreichev V. L. et al. Granitoid magmatism in the North of the Urals: U–Pb age, evolution, sources. Geodynamics & Tectonophysics. 2021. Vol. 12, No. 2. pp. 287–309.
9. Cox K. G., Bell J. D., Pankhurst R. J. The interpretation of igneous rocks. George, Allen and Unwin, London, Boston, Sydney, 1979.
10. Peccerillo A., Taylor S. R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology. 1976. Vol. 58, No. 1. pp. 63–81.
11. Irvine T. N., Baragar W. R. A. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences. 1971. Vol. 8, No. 5. pp. 523–548.
12. Pearce J. A., Harris N. B. W., Tindle A. G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology. 1984. Vol. 25, Iss. 4. pp. 956–983.
13. Harris N. B. W., Pearce J. A., Tindle A. G. Geochemical characteristics of collision-zone magmatism. Geological Society, London, Special Publications. 1986. Vol. 19, No. pp. 67–81.
14. Anders E., Grevesse N. Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta. 1989. Vol. 53, No. 1. pp. 197–214.
15. McDonough W. F., Sun S. The composition of the Earth. Chemical Geology. 1995. Vol. 120, No. 3-4. pp. 223–253.

16. Korovin D. D. Geochemical features of the Devonian plutonic rocks of the Reftinsky massif (Middle Urals). News of the Ural State Mining University. 2022. Vol. 1(65). pp. 13–21.
17. Znamensky S. E. Petrological and geochemical characteristic of the rocks of the voznesensky intrusive massif (Southern Urals): Оn the question of the composition and sources of magma producing gold and copper porphyry mineralization. Lithosphere. 2021. Vol. 21, No. 3. pp. 365–385.
18. Uchida E., Nagano S., Nik S., Yonezu K., Saitoh Y. et al., Geochemical and radiogenic isotopic signatures of granitic rocks in Chanthaburi and Chachoengsao provinces, southeastern Thailand: Implications for origin and evolution. Journal of Asian Earth Sciences X. 2022. Vol. 8. DOI: 10.1016/j.jaesx.2022.100111
19. Yang Yu, Min Sun, Xiaoping Long, Pengfei Li, Guochun Zhao, et al. Whole-rock Nd–Hf isotopic study of I-type and peraluminous granitic rocks from the Chinese Altai: Constraints on the nature of the lower crust and tectonic setting. Gondwana Research. 2017. Vol. 47. pp. 131–141.
20. Wu F. Y., Liu X. C., Ji W. Q., Wang J. M., Yang L. Highly fractionated granites: Recognition and research. Science China Earth Sciences. 2017. Vol. 60. pp. 1201–1219.
21. Kuzmin V. K., Naumov M. V., Rodionov N. V., Zelepugin V. N., Yurchenko Y. Y. Paleoproterozoic granitoids in the Luktur Complex, the Yurovsky Uplift (Okhotsk Massif): composition, age and genesis according to geochemical, Nd-Sr isotope-geochemical and U-Pb geochronological data. Regional Geology and Metallogeny. 2022. Vol. 90. pp. 58–77.
21. Liu D., Zhao Z., Yan J., Shi Q. The Sangri highly fractionated I-type granites in southern Gangdese: Petrogenesis and dynamic implication. Acta Petrologica Sinica. 2017. Vol 33(8). pp. 2479–2493.
22. Chappell B. W., White A. J. R. I- and S-type granites in the Lachlan Fold Belt. Special Paper of the Geological Society of America. 1992. Vol. 272. pp. 1–26.
23. Li C., Yan J., Yang C., Song C. Z., Wang A. G. et al. Generation of leucogranites via fractional crystallization: A case study of the Jurassic Bengbu granite in the southeastern North China Craton. Lithos. 2020. Vol. 352-353. DOI:10.1016/j.lithos.2019.105271
24. Dio Rizqi Irawan, Endang Wiwik Dyah Hastuti. Karakteristik batuan granitoid formasi granit Garba Daerah Tekana dan sekitarnya, Kabupaten OKU Selatan, Sumatera Selatan. Journal of Earth and Energy Sriwijaya University. 2020. Vol. x. pp. 1–12.
25. Eskandari A., Deevsalar R., Rosa R. De, Shinjo R., Donato P. et. al. Geochemical and isotopic constraints on the evolution of magma plumbing system at Damavand Volcano, N Iran. Lithos. 2020. Vol. 354-355. DOI: 10.1016/j.lithos.2019.105274
26. Przybyło A., Pietranik A., Zieliński G. Cerium and Ytrium in apatite as records of magmatic processes: Insight into fractional crystallization, magma mingling and fluid saturation. Geochemistry. 2022. Vol. 82, Iss. 2. DOI: 10.1016/j.chemer.2022.125864
27. Naumov V. B., Dorofeeva V. A., Girnis A. V., Kovalenker V. A. Volatile, Trace, and Ore Elements in Magmatic Melts and Natural Fluids: Evidence from Mineral-Hosted Inclusions. II. Effect of Crystallization Differentiation on the Concentrations of Ore Elements. Geochemistry International. 2022. Vol. 60, No. 6. pp. 537–550.
28. Scaillet B., France-Lanord C., Le Fort P. Badrinath-Gangotri plutons (Garhwal, India): petrological and geochemical evidence for fractionation processes in a high Himalayan leucogranite. Journal of Volcanology and Geothermal Research. 1990. Vol. 44, No. 1-2. pp. 163–188.
29. Lee S. G., Asahara Y., Tanaka T., Lee S. R., Lee T. Geochemical significance of the Rb-Sr, La-Ce and Sm-Nd isotope systems in A-type rocks with REE tetrad patterns and negative Eu and Ce anomalies: The Cretaceous Muamsa and Weolaksan granites, South Korea. Geochemistry. 2013. Vol. 73, Iss. 1. pp. 75–88.
30. Shan H., Zhai M., Lu X. Petrogenesis delineation of the felsic intrusive rocks in the eastern North China Craton: Implications for crustal evolution and geodynamic regimes. Lithos. 2022. Vol. 422-423. DOI: 10.1016/j.lithos.2022.106728
31. Kholodnov V. V., Shardakova G. Yu., Puchkov V. N., Petrov G. A., Shagalov E. S. et al. Paleozoic granitoid magmatism of the urals: the reflection of the stages of the geodynamic and geochemical evolution of a collisional orogen. Geodynamics & Tectonophysics. 2021. Vol. 12(2). pp. 225–245.
32. Gillespie M. R., Kendall R. S., Leslie A. G., Millar I. L., Dodd T. J. H. et al. The igneous rocks of Singapore: New insights to Palaeozoic and Mesozoic assembly of the Sukhothai Arc. Journal of Asian Earth Sciences. 2019. Vol. 183. DOI: 10.1016/j.jseaes.2019.103940
33. Clemens J. D., Darbyshire D. P. F., Flinders J. Sources of post-orogenic calcalkaline magmas: The Arrochar and Garabal Hill-Glen Fyne complexes, Scotland. Lithos. 2009. Vol. 112, Iss. 3–4. pp. 524–542.
34. Parnachev V. P. Elementaries of Geodynamic Analysis. Tomsk : NTL, 2014. 316 p.
35. Yarmolyuk V. V., Kuzmin M. I., Vorontsov A. A. West pacific-type convergent boundaries and their role in the formation of the Central Asian fold belt. Russian Geology and Geophysics. 2013. Vol. 54, No. 12. pp. 1427–1441.
36. Eyal M., Litvinovsky B., Jahn B. M., Zanvilevich A., Katzir Y. Origin and evolution of post-collisional magmatism: Coeval Neoproterozoic calc-alkaline and alkaline suites of the Sinai Peninsula. Chemical Geology. 2010. Vol. 269, Iss. 3-4. pp. 153–179.
37. Ghoneim M. F., Abdel-Karim A. A. M., Abu Anbar M. M., Nageib A., El-Shafei S. A., Petrogenesis of postcollisional high-K calc-alkaline and alkaline magmatism in Southern Sinai, Egypt: The role of crustal anatexis
combined with convective diffusion. The Journal of Geology. 2022. Vol. 130, No. 2. pp. 111–132.
38. Dong P., Dong G., Santosh M., Mo X., Sun Z., et al. Eocene magmatism in the western Tengchong Block: Implications for crust-mantle interaction associated with the slab rollback of the Neo-Tethys Ocean. Gondwana Research. 2022. Vol. 106. pp. 259–280.
39. Zaikova V. V. Metallogeny of ancient and modern oceans. Volcanism and ore formation. Miass : UrO RAN, 2018. 316 p.
40. Gao L., Liu S., Sun G., Hu Y., Guo R. et al. Neoarchean crust-mantle interactions in the Yishui Terrane, south-eastern margin of the North China Craton: Constraints from geochemistry and zircon U-Pb-Hf isotopes of metavolcanic rocks and high-K granitoids. Gondwana Research. 2019. Vol. 65. pp. 97–124.
41. Fadaeian M., Jahangiri A., Ao S., Kamali A. A., Xiao W. Geochemistry and petrogenesis of Shoshonitic Dyke Swarm in the Northeast of Meshkinshahr, NW Iran. Minerals. 2022. Vol. 12, Iss. 3. pp. 1–27.
42. He X., Tan S., Liu Zh., Bai Zh., Wang X. et al. Petrogenesis of the early cretaceous aolunhua adakitic monzogranite porphyries, Southern Great Xing’an Range, NE China: Implication for geodynamic setting of Mo mineralization. Minerals. 2020. Vol. 10, Iss. 4. DOI: 10.3390/min10040332
43. Stolz A. J., Jochum K. P., Spettel B., Hofmann A. W. Fluid- and melt-related enrichment in the subarc mantle: Evidence from Nb/Ta variations in islandarc basalts. Geology. 1996. Vol. 24, No. 7. pp. 587–590.
44. Meng L.-T., Chen B.-L., Zhao N.-N., Wu Y., Zhang W.-G. et al. The distribution, geochronology and geochemistry of early Paleozoic granitoid plutons in the North Altun orogenic belt, NW China: Implications for the petrogenesis and tectonic evolution. Lithos. 2017. Vol. 268–271. pp. 399–417.
45. Kosarev A. M., Seravkin I. B., Kholodnov V. V. Geodynamic, petrological and geochemical aspects of zoning Magnitogorsk pyrite megazone in Southern Ural. Lithospere. 2014. No. 2. pp. 3–25.
46. Imamverdiyev N.A. Delamination of subducted lithospheric slab as a reason of late cenozoic collision volcanism in the Lesser Caucasus. Vestnik Bakinskogo Gosudarstvennogo Universiteta. Seriya estestvennykh nauk. 2008. No. 3.

Full content Geochemistry and petrogenesis of Syrostan granitoid intrusions in the Southern Urals
Back