Журналы →  Tsvetnye Metally →  2023 →  №12 →  Назад

HEAVY NON-FERROUS METALS
Название On the problem of intensified decopperization of copper electrolysis slimes
DOI 10.17580/tsm.2023.12.02
Автор Lobanov V. G., Polygalov S. E., Mamyachenkov S. V., Khmelev N. B., Melnik F. F
Информация об авторе

Ural Federal University named after the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia

V. G. Lobanov, Associate Professor, Candidate of Technical Sciences, e-mail: v.g.lobanov@urfu.ru
S. E. Polygalov, Senior Lecturer, Engineer, e-mail: sergey.polygalov@urfu.ru
S. V. Mamyachenkov, Head of the Department of Non-Ferrous Metallurgy, Candidate of Technical Sciences, Professor, e-mail: svmamyachenkov@yandex.ru

 

IMG-Engineering, Moscow, Russia
N. B. Khmelev, Chief Development Officer
F. F. Melnik, Lead Manager Technologist

Реферат

This paper considers the problem of raising the efficiency of the initial stage in the processing of copper electrolysis slimes – i. e. oxidation leaching of copper. Metallic copper is the main component of such slime. The overall concentration of elemental and chalcogenide copper in slime at different sites can reach 20 to 30%. Selective leaching (with maximum possible recovery) of copper at the initial stage helps to significantly reduce the amount of slime and makes it easier to recover noble metals, selenium and tellurium. The paper demonstrates the advantages and disadvantages of some known and practiced decopperization techniques, such as aeration lowtemperature, autoclave, electrochemical and alternating current decopperization, as well as nitrite process and sulphatization. In order to intensify the long and costly process, it is proposed to use a leaching system that contains a solution of sulphuric acid and hydrogen peroxide as an oxidant. The paper describes the thermodynamic indicators of possible transformations in the metallic copper – sulphuric acid system with different oxidants used, which are applicable at copper electrolysis plants. The paper examines certain features related to the preparation and application of sulphuric acid- and hydrogen peroxide-based leaching solutions, which enable to achieve maximum utilization of peroxide. In order to achieve maximum decopperizing efficiency of the reagent, it is proposed to prepare a mixture of concentrated sulphuric acid and hydrogen peroxide and introduce the forming metasulphuric acid in the process at low temperature. The paper describes the outcomes of experiments that aimed at analyzing the aggregated indicators of decopperization of a private sample of copper electrolysis slime in the presence of hydrogen peroxide. It was established that when the proposed leaching system is used at room temperature the decopperization degree can reach 90 to 92 % in 30 to 45 minutes.

Ключевые слова Anode slimes, noble metals, hydrometallurgy, copper, oxidant, leaching
Библиографический список

1. Zhmurova V. V. Hydrochemical treatment of gold-bearing cathode deposits aimed at removal of heavy non-ferrous metals. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2020. Vol. 24, No. 5. pp. 1126–1136. DOI: 10.21285/1814-3520-2020-5-1126-1136
2. Vydysh S. O., Bogatyreva E. V., Galieva Zh. N., Semenov A. A. A study of combined extraction of copper and silver from copper electrorefining slimes. Part 2. Metallurg. 2023. No. 6. pp. 106–114.
3. Vydysh S. O., Bogatyreva E. V., Galieva Zh. N., Semenov A. A. A study of combined extraction of copper and silver from copper electrorefining slimes. Part 1. Metallurg. 2023. No. 5. pp. 89–97.
4. Shevlyakov F. B., Nasyrov I. Sh., Umergalin T. G. Influence of hydrodynamic regime on recovery of copper-ammonia solution components. Oil and Gas Business. 2020. No. 5. pp. 107–121. DOI: 10.17122/ogbus-2020-5-107-121
5. Yusupov U. S., Usmankulov O. N., Muminov F. Yu. Developing a process for recovering non-ferrous and precious metals from secondary raw materials. Universum: Tekhnicheskie nauki: elektronnyy nauchnyy zhurnal. 2023. No. 6-1 (111). pp. 42–45. DOI: 10.32743/UniTech.2023.111.6.15641
6. Moldurushku M. O. Solubility of non-ferrous metals in waste leaching solutions. Natural resources, environment and society. 2020. No. 3 (7). pp. 72, 73. DOI: 10.24411/2658-4441-2020-10030
7. Zhmurova V. V. Sulphuric acid leaching of copper and lead from gold-bearing cathode deposits. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2019. Vol. 23, No. 5. pp. 1023–1031. DOI: 10.21285/1814-3520-2019-5-1023-1031
8. Boyarskikh E. P., Brusnitsyna L. A., Stepanovskikh E. I., Alekseeva T. A. Optimized composition of copper-ammonia pickling solution in the printed circuit board industry. Butlerovskie soobshcheniya. 2020. Vol. 61, No. 3. pp. 36–42. DOI: 10.37952/ROI-jbc-01/20-61-2-3-36
9. Xing W. D., Lee M. S. Development of a hydrometallurgical process for the recovery of gold and silver powders from anode slime containing copper, nickel, tin, and zinc. Gold Bulletin. 2019. Vol. 52. pp. 69–77. DOI: 10.1007/s13404-019-00254-0
10. Yang Hong-Ying, Li Xue-Jiao, Tong Lin-Lin, Jin Zhe-Nan et al. Leaching kinetics of selenium from copper anode slimes by nitric acid-sulfuric acid mixture. Transactions of Nonferrous Metals Society of China. 2018. Vol. 28, Iss. 1. pp. 186–192. DOI: 10.1016/S1003-6326(18)64652-7
11. Shuai Rao, Yi Liu, Dongxing Wang, Hongyang Cao et al. Pressure leaching of selenium and tellurium from scrap copper anode slimes in sulfuric acid-oxygen media. Journal of Cleaner Production. 2021. Vol. 278. 123989. DOI: 10.1016/j.jclepro.2020.123989
12. Shuai Rao, Dongxing Wang, Hongyang Cao et al. Hydrothermal oxidative leaching of Cu and Se from copper anode slime in a diluted H2SO4 solution. Separation and Purification Technology. 2022. Vol. 300. 121696. DOI: 10.1016/j.seppur.2022.121696
13. Kurniawan Kurniawan, Jae-chun Lee, Jonghyun Kim, Ha Bich Trinh, Sookyung Kim. Augmenting metal leaching from copper anode slime by sulfuric acid in the presence of manganese(IV) oxide and graphite. Hydrometallurgy. 2021. Vol. 205. 105745. DOI: 10.1016/j.hydromet.2021.105745
14. Gaev A. I. Recovery of noble and rare elements from slimes. Sverdlovsk – Moscow : Metallurgizdat, 1940. 220 p.
15. Baraboshkin N. N., Gaev A. I. Processing of electrolytic slimes at the Nizhny Kyshtym plant. Tsvetnye Metally. 1934. No. 7.
16. Kholmanskikh Yu. B., Cherkasov G. F., Lobanov E. N., Pinigin V. K. Intensification of copper electrolysis slime decopperization process. Tsvetnye Metally. 1970. No. 7. pp. 29, 30.
17. Hoffman J. Process and engineering considerations in the pressure leaching of copper refinery slimes. EPD Congress 2000 as held at the 2000 TMS Annual Meeting. Nashville, TN. USA. 2000. pp. 397–410.
18. Soshnikova L. A., Kupchenko M. M. Processing of copper electrolysis slimes. Moscow : Metallurgiya, 1978. 200 p.
19. Maslenitskiy I. N., Chugaev L. G. Metallurgy of noble metals. Moscow : Metallurgiya, 1987. 366 p.
20. Dönmez B., Çelik C., Çolak S., Yartasi A. Dissolution optimization of copper from anode slime in H2SO4 solutions. Industrial & Engineering Chemistry Research. 1998. Vol. 37, Iss. 8. pp. 3382–3387.
21. Shubinok A. V., Kuzmenko T. S. On aeration decopperization of copper electrolysis slimes. Tsvetnye Metally. 1984. No. 1. pp. 16–18.
22. Mastyugin S. A., Volkova N. A., Naboychenko S. S., Lastochkina M. A. Copper and nickel electrolytic refining slimes. Yekaterinburg : UrFU. 2013. 256 p.
23. Kremko E. G. Optimized sulphatization process as part of copper electrolysis slimes processing: Extended abstract of PhD dissertation. Sverdlovsk : UPI im. S. M. Kirova, 1983. 22 p.
24. Greyver T. N., Kosover V. M., Belenkiy A. M., Vergizova T. V. Developing a hydrometallurgical process for processing of copper electrolysis slimes. Proceedings of the 4th All-Union Meeting On the Chemistry and Technology of Chalcogens and Chalcogenides. Karaganda, 19–21 September 1990.
25. Belenkiy A. M., Boduen A. Ya., Petrov G. V., Panotskiy D. A. Effect of oxidizing agents on liquid phase sulphatization of copper electrolysis slimes. Tsvetnaya metallurgiya. 2004. No. 9. pp. 17–20.
26. Lobanov E. N., Khudyakov I. F. An electrochemical technique for decopperizing copper refinery slimes. Tsvetnaya metallurgiya. 1978. No. 21. pp. 26, 27.
27. Palant A. A., Bryukvin V. A., Levin A. M., Petrova V. A. Advanced hydroelectrochemical processes for comprehensive processing of unconventional raw materials. Baykov Metallurgy and Materials Institute Celebrating Its 60th Anniversary: Research papers. Moscow : Eliz, 1998. pp. 91–101.
28. Shalaeva T. S., Ugorets M. Z., Buketov E. A. On electrochemical removal of copper from copper electrolysis slimes. Russian Journal of Applied Chemistry. 1979. No. 5. pp. 1196–1198.
29. Kravtsova E. D. Hydrochemical oxidation of chalcogens and chalcogenides of non-ferrous metals in copper electrolysis slimes using sodium nitrite: Extended abstract of PhD dissertation. Krasnoyarsk, 1996. 18 p.
30. Kosover V. M., Lomonosov V. N., Popkov E. A., Kulakova A. A. On the problem of processing electrolysis slimes generated by Severonickel Works. Proceedings of the 4th All-Union Meeting On the Chemistry and Technology of Chalcogens and Chalcogenides. Karaganda, 19–21 September, 1990.
31. Khudyakov I. F., Doroshkevich A. P., Karelov S. V. Metallurgy of secondary heavy metals. Moscow : Metallurgiya, 1987. 523 p.
32. Naboychenko S. S., Smirnov V. I. Hydrometallurgy of copper. Moscow : Metallurgiya, 1974. 271 p.
33. Mekler L. I., Yashchenkova V. M., Buketov E. A. Intensified process of decopperizing copper electrolysis slimes. Tsvetnye Metally. 1970. No. 7. pp. 27–29.
34. Berenblit V. M., Burdin V. V., Vishnyakov V. M., Gribel V. I. et al. The chemistry and technology of hydrogen peroxide. Leningrad : Khimiya. Leningradskoe otdelenie, 1984. 201 p.
35. Lobanov V. G., Naumov K. D., Korolev A. A. Theory of copper-electrolyte slimes decoppering in the presence of hydrogen peroxide. Materials Science and Metallurgical Technology (Materials Science Forum). 2019. Vol. 946. pp. 585–590.
36. Lobanov V. G., Mastyugin S. A., Ashikhin V. V., Lebed A. B. et al. Leaching of metal copper. Patent RF, No. 2578882. Applied: 12.12.2013. Published: 27.03.2016. Bulletin No. 9.

Language of full-text русский
Полный текст статьи Получить
Назад