Journals →  CIS Iron and Steel Review →  2023 →  #2 →  Back

Metal Science and Metal Physics
ArticleName Formation of microscopic internal stresses in rails during long-term operation
DOI 10.17580/cisisr.2023.02.15
ArticleAuthor V. E. Gromov, M. A. Porfiryev, R. E. Kryukov, V. V. Shlyarov

Siberian State Industrial University (Novokuznetsk, Russia)

V. E. Gromov, Dr. Phys.-Math., Prof., Head of the Dept. of Natural Sciences named after prof. V. M. Finkel, e-mail:
M. A. Porfiryev, Researcher, e-mail:
R. E. Kryukov, Cand. Eng., Associate Prof., Dept. of Metallurgy of Ferrous Metals, e-mail:
V. V. Shlyarov, Postgraduate Student, Dept. of Natural Sciences named after prof. V. M. Finkel, e-mail:


The level of microscopic internal long-range stress fields &l on the rolling surface and the working fillet is determined for two categories of rails with a carbon content of 0.74 wt. % and 0.91 wt. %. DT350 for general purpose and DT400IK of increased wear resistance and contact endurance after the passed tonnage of 1,770 mln. t (for DT350) and 187 mln. t DT400IK (1) and 234 mln. t of DT400IK (2). For this purpose, the bending extinction contours were analyzed by means of transmission electron diffraction microscopy, the parameters of which were used in calculating σl. The presence of excess extinction contours indicates the bending-torsion of the lattice, which is characterized by the excess density of dislocations. A comparison is made with other methods for measuring internal stress fields at the meso- and macro levels. It is shown that the parameters of the bending extinction contours are the most informative and allow one to control the locality of the measurement σl. Sources of internal stress fields in rail steels are noted. An increase in the level of σl was revealed in DT400IK rails in comparison with DT350 rails. The growth of the passed tonnage for rails of category DT400IK leads to an increase in σl, the values of internal stresses on the fillet surface exceed the corresponding values on the rolling surface. The physical causes of the observed changes are discussed.

keywords Internal stress fields, excess dislocation density, surface, rails, electron microscopy

1. Koneva N. A., Kozlov E. V., Trishkina L. I. Internal field sources, their screening and the flow stress. Mat. Scie. and Eng.: A. 2001. Vol. A319-321. pp. 156–159.
2. Yang M., Pan Yu., Yuan F., Zhu Yu., Wu Back X. Stress Strengthening and Strain Hhardening in Gradient Structure. Materials Research Letters. 2016. Vol. 4 (3). pp. 1–8.
3. Popova N. A., Ivanov Yu. F., Gromov V. E. Nikonenko E. L. et al. Internal stress in polycrystalline metallic materials. Novokuznetsk: Polygrafist, 2023. 144 p.
4. Kundu A., Field D. P. Geometrically Necessary Dislocation Density Evolution in Interstitial Free Steel at Small Plastic Strains. Metall. Mater. Trans.: A. 2018. Vol. 49. pp. 3274–3282.
5. Ivanov Yu. F., Gromov V. E., Yuriev A. A., Kormyshev V. E., Rubannikova Yu. A., Semin A. P. Deformation Strengthening Mechanisms of Rails in Extremely Long-Term Operation. Journal of Materials Research and Technology. 2021. Vol. 11. pp. 710–718.
6. Yuriev A. A., Gromov V. E., Ivanov Yu. F., Rubannikova Yu. A., Starostenkov M. D., Tabakov P. Y. Structure and Properties of Lengthy Rails after Extreme Long-Term Operation. Materials Research Forum LLC, 2021. 193 p.
7. Ivanov Yu. F., Gleser A. M., Kuznetsov R. V., Gromov V. E., Shliarova Yu. A., Semin A. P., Sundeev R. V. Fine Structure Formation in Rails under Ultra Long-Term Operation. Materials Letters. 2022. Vol. 309. pp. 131378.
8. Smirnov A. N., Kozlov E. V. Substructure, internal stress fields and the problem of destruction of steam pipelines made of steel 12Kh1MF. Kemerovo: Kuzbassvuzizdat, 2004. 163 p.
9. Panin V. E., Egorushkin V. E. Fundamental role of local curvature of crystal structure in plastic deformation and fracture of solids. AIP Conf. Proc. 2014. Vol. 1623. pp. 475–478.
10. Cattivelli A., Roy M. J., Burke M. G, Dhers J., Jean Lee, Francis J. A. Internal stresses in a clad pressure vessel steel during post weld heat treatment and their relevance to underclad cracking. International Journal of Pressure Vessels and Piping. 2021. Vol. 193. pp. 104448.
11. Fang X.-Y., Zhang H.-N., Ma D.-W., Wu Z.-J., Huang W. Influence of Welding Residual Stress on Subsurface Fatigue Crack Propagation of Rail. Engineering Fracture Mechanics. 2022. Vol. 271. pp. 108642.
12. Kozlov E. V., Popova N. A., Kabanina O. V., Klimashin S. I., Gromov V. E. Evolution of the phase composition, defective structure, internal stresses and redistribution of carbon during tempering of cast structural steel. Novokuznetsk: Publishing House of SibSIU, 2007. 177 p.
13. Zhang Y., Yu T., Xu R., Thorborg J., Liu W., Tischler J., Godfrey A., Jensen D. J. Local residual stresses and microstructure within recrystallizing grains in iron. Materials Characterization. 2022. Vol. 191. pp. 112113.
14. Gleser A. M., Kozlov E. V., Koneva N. A., Popova N. A., Kurzina I. A. Plastic Deformation of Nanostructured Materials. CRC Press, Taylor & Francis Group, Boca Raton, London, New York, 2017. 321 р.
15. Vinogradov A., Estrin Y. Analytical and Numerical Approaches to Modelling Severe Plastic Deformation. Progress in Materials Science. 2018. Vol. 95. pp. 172–242.
16. Wilde G., Divinski S. Grain Boundaries and Diffusion Phenomena in Severely Deformed Materials. Materials Transactions. 2019. Vol. 60 (7). pp. 1302–1315.
17. Burkin S. P., Shimov G. V., Andryukova E. A. Residual stresses in metal products. Yekaterinburg: Ural University Press, 2015. 248 p.
18. Experimental mechanics: In 2 books: Translated from English. Ed. A. Kobayashi. M.: Mir, 1990. 616 p.
19. Withers P. J. Mapping residual and internal stress in materials by neutron diffraction. Comptes Rendus Physique. 2007. Vol. 8 (7-8). pp. 806–820.
20. Withers P. J., Turski M., Edwards L., Bouchard P. J., Buttle D. J. Recent advances in residual stress measurement. International J. of Pressure Vessels and Piping. 2008. Vol. 85 (3). pp. 118–127.
21. McNelis K. P., Dawson P. R., Miller M. P. A Two-Scale Methodology for Determining the Residual Stresses in Polycrystalline Solids Using High Energy X-ray Diffraction Data. J. of the Mechanics and Physics of Solids. 2013. Vol. 61 (2). pp. 428–449.
22. Demir E., Park J-S., Miller M. P., Dawson P. R. A Computational Framework for Evaluating Residual Stress Distributions from Diffraction-Based Lattice Strain Data. Computer Methods in Applied Mechanics and Engineering. 2013. Vol. 265. pp. 120–135.
23. Yildirim C., Jessop C., Ahlström J., Detlefs C., Zhang Y. 3D Mapping of Orientation Variation and Local Residual Stress Within Individual Grains of Pearlitic Steel Using Synchrotron Dark Field X-ray Microscopy. Scripta Materialia. 2021. Vol. 197. pp. 113783.
24. Hirsch P. B., Howie A., Nicholson R. B., Pashley D. W., Whelan M. J. Electron microscopy of thin crystals. London: Butterworths, 1965. 570 p.
25. Koneva N. A., Trishkina L. I., Zhdanov A. N., Perevalova O. B., Popova N. A., Kozlov E. V. Sources of stress fields in deformed polycrystals. Fizicheskaya mezomekhanika. 2006. Vol. 9 (3). pp. 93–101.
26. Gromova A. V., Yuriev A. B., Ivanov Yu. F., Chinokalov V. Ya. Formation of long-range stress fields during wire drawing. Izv. vuzov. Chernaya metallurgiya. 2006. No. 2. pp. 27–31.
27. Rybin V. V. Patterns of the formation of mesostructures during the development of plastic deformation. Voprosy materialovedeniya. 2002. Vol. 29 (1). pp. 11–33.

Full content Formation of microscopic internal stresses in rails during long-term operation