Journals →  Горный журнал →  2023 →  #11 →  Back

АЭРОЛОГИЯ И ПРОМЫШЛЕННАЯ БЕЗОПАСНОСТЬ
ArticleName Применение плавающего коэффициента рециркуляции при построении систем автоматического управления проветриванием рудников
DOI 10.17580/gzh.2023.11.13
ArticleAuthor Кашников А. В., Круглов Ю. В.
ArticleAuthorData

Горный институт УрО РАН, Пермь, Россия

Кашников А. В., младший научный сотрудник, alexey.kashnikov@gmail.com
Круглов Ю. В., руководитель Проектно-инновационного центра, д-р техн. наук

Abstract

Рассмотрен усовершенствованный подход к определению текущего коэффициента рециркуляции для регулируемых направлений в зависимости от концентрации метана на исходящей струе. Разработаны формулы для оперативного пересчета уставок для вентиляционного оборудования с учетом плавающего коэффициента рециркуляции, позволяющие реализовать итерактивный цикл каскадного управления в рамках общего алгоритма системы автоматического управления проветриванием.

Исследование выполнено при финансовой поддержке Министерства науки и образования РФ (проект НИОКТР №122012000396-6).

keywords Рудник, проветривание, система автоматического управления, метан, нечеткая логика, вентиляционный регулятор, рециркуляционная установка, вентилятор, концентрация газа, энергоэффективность
References

1. Grishin E. L., Nakaryakov E. V., Trushkova N. A., Sannikovich A. N. Experience in implementation of dynamic mine ventilation control. Gornyi Zhurnal. 2018. No. 8. pp. 103–108.
2. Acuña E., Allen C. Ventilation control system implementation and energy consumption reduction at Tott en Mine with Level 4 Tagging and future plans. Proceedings of the First International Conference on Underground Mining Technology. Sudbury, Canada, 2017. p. 89–95.
3. De Vilhena Costa L. V., de Silva J. M. Cost-saving electrical energy consumption in underground ventil ation by the use of ventilation on demand. Mining Technology. 2019. Vol. 129. DOI: 10.1080/25726668.2019.1651581
4. Moreau K., Laamanen C., Bose R. et al. Environmental impact improvements due to introducing automation into underground copper mines. International Journal of Mining Science and Technology. 2021. Vol. 31. No. 6. pp. 1159–1167.
5. Levin L. Y., Semin M. A. Conception of automated mine ventilation control system and its implementation on Belarussian potash mines. Proceedings of the 16th North American Mine Ventilation Symposium. Colorado, USA, 2017. pp. 17.1–17.8.
6. Acuña E., Alvarez R., Hurtado J. Updated ventilation-on-demand review: implementation and savings achieved. The 1st International Conference of Underground Mining. Santiago, Chile, 2016.
7. Chatterjee A., Zhang L., Xia X. Optimization of mine ventilation fan speeds according to ventilation o n de mand and time of use tariff. Applied Energy. 2015. Vol. 146. p. 65–73.
8. Semin M. A., Grishin E. L., Levin L. Y., Zaitsev A. V. Automated ventilation control in mines. Challenges, state of the art, areas for improvement. Journal of Mining Institute. 2020. Vol. 246. pp. 623–632. DOI: 10.31897/PMI.2020.6.4
9. Sjöström S., Klintenäs E., Johansson P., Nyqvist J. Optimized model-based control of main mine ventilation a ir flows with minimized energy consumption. International Journal of Mining Science and Technology. 2020. Vol. 30. pp. 533–539.
10. Semin M. A., Levin L. Y., Maltsev S. V. Development of automated mine ventilation control systems for Belarusian potash mines. Archives of Mining Sciences. 2020. Vol. 65, No. 4. pp. 803–820. DOI: 10.24425/ams.2020.135178
11. Kashnikov A. V., Kruglov Y. V. Strategy of mine ventilation control in optimal mode using fuzzy logic controllers. Journal of Mining Institute. 2023. Vol. 262. pp. 594–605. DOI: 10.31897/PMI.2022.75
12. Kashnikov A. V., Kruglov Yu. V. Fuzzy logic-based determination of ventilation parameters in active mining areas. GIAB. 2023. No. 5. pp. 68–82. DOI: 10.25018/0236_1493_2023_5_0_68

Language of full-text russian
Full content Buy
Back