Journals →  Tsvetnye Metally →  2023 →  #8 →  Back

Marking the 250th anniversary of the Empress Catherine II St Petersburg Mining University and the 20th anniversary of the Nanophysics & Nanomaterials International Conference
ArticleName Preparation of fullerenes and their derivatives and their introduction into copper alloys
DOI 10.17580/tsm.2023.08.08
ArticleAuthor Letenko D. G., Ivanov A. S., Fitsak V. V.

Saint Petersburg State University of Architecture and Civil Engineering (SPbGASU), Saint Petersburg, Russia:

D. G. Letenko, Associate Professor at the Department of Construction Materials Engineering and Metrology, Candidate of Physics & Mathematics Sciences, e-mail:


Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russia:
A. S. Ivanov, Associate Professor at the Department of General and Applied Physics, Candidate of Technical Sciences, e-mail:
V. V. Fitsak, Associate Professor at the Department of General and Applied Physics, Candidate of Technical Sciences


One of the most critical areas in today’s metallurgy includes the development and production of high-strength structural materials, in particular metal alloys. High strength can be achieved in alloys through the introduction of nanoinoculants – i.e. nanodispersed fullerenes, which are capable of modifying the structure to a fine-dispersed state. Since nanoinoculants tend to demonstrate a particular type of behavior in liquid environments, a specific production cycle had to be designed that would ensure effective blending because not only nanodispersed fullerenes should be properly introduced into liquid alloy, but they should also be properly prepared. In order to achieve an even distribution of inoculants throughout a specimen made of bronze BrNKhK and reach a given concentration, the authors had to tackle two problems:
– ensure quick submersion, melting and dissolution of the master alloy with a nanoinoculant in the liquid alloy before the solidification has started (preventing at the same time the contact of nanodispersed fullerene with atmospheric air); for this, tablet-shaped specimens were made out of copper powder PMS-1-based master alloys, the specific weight of which exceeded the one of similar items made of the actual alloy, and thus the master alloy would dissolve and fuse with the nanoinoculant under the alloy layer;
– break the agglomerates formed by groups of fulleroid particles in liquid environments as the result of co-interaction due to their high cohesion.

For this purpose, a process of deep dispersion was developed that involves mechanical activation and ultrasonic impact with simultaneous quality control at each stage. It is shown that nanoinoculation changes the microstructure of the alloy resulting in enhanced physico-mechanical properties.

keywords Non-ferrous metallurgy, copper, alloy, inoculation, fullerene, nanocarbon, structure, properties, casting

1. Malaki M., Xu W., Kasar A. R. et al. Advanced metal matrix nanocomposites. Metals. 2019. Vol. 9, Iss. 3. p. 330.
2. Budelovskiy D. I., Petrovich S. Yu., Lipin V. A. Emergence and growth of nanodispersed intermetallic strengthening inclusions in rapidly cooled Al – Mg – Zr – X alloys: Features. Zapiski Gornogo instituta. 2018. Vol. 230. pp. 139–145.
3. Wang W., Yi D., Hua W., Wang B. High damping capacity of Al-40Zn alloys with fine grain and eutectoid structures via Yb alloying. Journal of Alloys and Compounds. 2021. Vol. 870. p. 159485.
4. Kurganova Yu. A., Shcherbakov S. P. Effect of a discrete additive of aluminium oxide on the structure and properties of aluminium alloy. Journal of Mining Institute. 2017. Vol. 228. pp. 717–721.
5. Syrkov A. G., Yachmenova L. A. Metallurgical products obtained by solidstate hydride synthesis. Journal of Mining Institute. 2022. Vol. 256. pp. 651–662.
6. Goncharova M. V., Mikhailova M. S. Two dynasties of mining engineers: the Beloglazaovs and the Thiemes – two branches of the same family – for a century and a half serving the Mining University. Tsvetnye Metally. 2023. No. 7. P. 90–96.
7. Tupik V. A., Margolin V. I., Kostrin D. K., Farmakovskiy B. V. Deposition of metal nanofilms on cylinder-shaped items. Tsvetnye Metally. 2022. No. 4. pp. 46–50.
8. Abe H., Kimura Y., Ma T., Tadaki D. et al. Response characteristics of a highly sensitive gas sensor using a titanium oxide nanotube film decorated with platinum nanoparticles. Sensors and Actuators B: Chemical. 2020.
Vol. 321. p. 128525.
9. Voznyakovskii A., Vozniakovskii A., Kidalov S. New way of synthesis of fewlayer graphene nanosheets by the self propagating high-temperature synthesis method from biopolymers. Nanomaterials. 2022. Vol. 12. p. 657.
10. Zhou J., Guo M., Wang L., Ding Y. et al. 1T-MoS2 nanosheets confined among TiO2 nanotube arrays for high performance supercapacitor. Chemical Engineering Journal. 2019. Vol. 366. pp. 163–171.
11. Fang W., Yu L. Preparation, characterization and photocatalytic performance of heterostructured CuO – ZnO-loaded composite nanofiber membranes. Beilstein Journal of Nanotechnology. 2020. Vol. 11, No. 1. pp. 631–650.
12. Lashkov A. V., Fedorov F. S., Vasilkov M. Y., Kochetkov A. V. et al. The Ti wire functionalized with inherent TiO2 nanotubes by anodization as one-electrode gas sensor: A proof-of-concept study. Sensors and Actuators B:
Chemical. 2020. Vol. 306. p. 127615.
13. Syrkov A. G., Kushchnko A. N., Silivanov M. O., Taraban V. V. Nanostructured regulation of the surface properties and hydrophobicity of nickel and iron by solidstate reduction and modifying methods. Tsvetnye Metally. 2022. No. 5. P. 54–59.
14. Bazhin V. Y., Aryshenskii E., Hirsch J., Kawalla R. et al. Impact of Zener-Hollomon parameter on substructure and texture evolution during thermomechanical treatment of iron-containing wrought aluminium alloys. Transactions of Nonferrous Metals Society of China. 2019. Vol. 29, Iss. 5. P. 893-906. DOI: 10.1016/S1003-6326(19)64999-X.
15. Pshchelko N. S. Use of hydrophobic nanocoatings to obtain silicon dioxide electrets. Journal of Mining Institute. 2018. Vol. 230. pp. 146–152.
16. Ma J., An W., Xu Q., Fan Q., Wang Y. Antibacterial casein-based ZnO nanocomposite coatings with improved water resistance crafted via double in situ route. Progress in Organic Coatings. 2019. Vol. 134. pp. 40–47.
17. Nguyen-Tri P., Nguyen T. A., Carriere P. Ngo Xuan C. Nanocomposite coatings: preparation, characterization, properties, and applications. International Journal of Corrosion. 2018. Vol. 2018. pp. 1–19. 4749501.
18. Pryakhin E. I., Troshina E. Yu. Degradation induced by thermal and chemical on matrix codes installed on brass and aluminium alloy parts by laser. Tsvetnye Metally. 2022. No. 7. P. 87–91.
19. Krasikov A. V., Markov M. A., Merkulova M. V., Gerashchenkov D. A. et al. Laser hardening of nanostructured NI – W coatings. Nanophysics & Nanomaterials: Proceedings of the International Conference. 24–25 November 2021, Saint Petersburg. 2021. pp. 151–155.
20. Prokopchuk N. R., Globa A. I., Laptik I. O., Syrkov A. G. The properties of metal coatings enhanced with diamond nanoparticles. Tsvetnye Metally. 2021. No. 6. pp. 55–58.

21. Bailey E. J., Winey K. I. Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: A review. Progress in Polymer Science. 2020. Vol. 105. p. 101242.
22. Korableva E. A., Kharitonov D. V., Anashkina A. A., Lemeshev D. O. Creation of heat-resistant nanostructure ceramics in ZrO2 – MgO system. Tsvetnye Metally. 2019. No. 10. pp. 61–66.
23. Zhigachev A. O., Golovin Yu. A., Umrikhin A. V., Korenkov V. V. et al. Hi-tech nanostructured zirconium dioxide ceramics. World of Materials and Technologies. 2nd revised edition. Moscow : Tekhnosfera, 2020. pp. 340–370.
24. Gerasimova A. S., Borisova L. G. Development of self-healing nanomaterials as one of the areas in modern materials engineering. Innovations and Prospects of Development of Mining Machinery and Electrical Engineering
(IPDME 2017): Proceedings of the International Science & Technology Conference. 23–24 March 2017. St Petersburg : Sankt-Peterburgskiy gornyi universitet. 2017. pp. 24.
25. Ryabko A. A., Mazing D. S., Bobkov A. A., Maksimov A. I. et al. The effect of interface doping of a zinc oxide nanorods system. Fizika tverdogo tela. 2022. Vol. 64. pp. 1681–1689.
26. Pruna A. Nanotechnology in eco-efficient construction. Second edition. Materials, Processes and Applications. 2018. pp. 337–359.
27. Petkova A. P., Ganzulenko O. Y. Laser marking of non-ferrous metal and alloy products using ultradense barcodes: process features. Tsvetnye Metally. 2022. No. 7. P. 92–97.
28. Demidov S. S., Bazhin V. Yu., Savchenkov S. A. Master alloys synthesized by aluminothermic reduction of ytterbium oxide with the production of nanosized intermetallics. Nanophysics & Nanomaterials: Procee dings
of the International Conference. 23–24 November 2022, Saint Petersburg. pp. 100–104.
29. Brichkin V. N., Vorobiev A. G., Bazhin V. Y. Mining Institute’s metallurgists: a tradition serving the country, science and production industry. Tsvetnye Metally. 2020. No 10. P. 4–13.
30. Barbin N. M., Yakupova L. V., Terentiev D. I., Alekseev S. G. Thermal behavior of fullerene S56. Nanophysics & Nanomaterials: Proceedings of the International Conference. 25–26 November 2020, Saint Petersburg. 2020. pp. 42–47.
31. Barbin N. M., Yakupova L. V., Terentiev D. I., Kuanyshev V. Т. Thermal behavior of С32 carbon nanoparticles in a nitrogen atmosphere. Journal of Physics: Conference Series. 2020. Vol. 1688. 01.2002.
32. Yurak V. V., Dushin A. V., Mochalova L. A. Vs sustainable development: scenarios for the future. Journal of Mining Institute. 2020. Vol. 242. pp. 242–247.
33. Cheremisina E., Cheremisina O., Ponomareva M., Bolotov V., Fedorov A. Kinetic features of the hydrogen sulfide sorption on the ferro-manganese material. Metals. 2021. Vol. 11. P. 90. DOI: 10.3390/met11010090
34. Litvinova T. E., Kashurin R., Lutskiy D. Complex formation of rare-earth elements in carbonate–alkaline media. Materials. 2023. Vol. 16. P. 3140. DOI: 10.3390/ma16083140
35. Letenko D. G., Nikitin V. A., Charykov N. A., Semenov K. N. et al. Production of carbon nanostructures from chemical waste. Vestnik Grazhdanskikh Inzhenerov. 2010. No. 1. pp. 108–118.
36. Letenko D. G., Nikitin V. A., Menshikova A. Yu., Pukharenko Yu. V. et al. The physico-chemical properties of water dispersions of a mixed fulleroidtype nanocarbon material. Part I. Vestnik Grazhdanskikh Inzhenerov. 2010.
No. 2. pp. 131–138.
37. Letenko D. G., Ivanov A. S., Matuzenko M. Yu., Nikitin V. A. et al. The physico-chemical properties of water dispersions of a mixed fulleroid-type nanocarbon material. Part II. Vestnik Grazhdanskikh Inzhenerov. 2010. No. 3. pp. 117–121.
38. Bezruchko G. S., Razorenov S. V., Popov M. Yu. Effect of the S60 fullerene additive on the strength of nanocrystalline copper and aluminium under shock-wave loading. Zhurnal tekhnicheskoy fiziki. 2014. No. 3. pp. 69–74.
39. GOST 28873–90. Alloys on the basis of heavy non-ferrous metals treated under pressure. Unified grades. Introduced: 01.01.1992.
40. TU 48-21-672–79. Strips made of alloy BRNKh 2.5 – 0.7 – 0.6. Introduced: 10.03.1980.
41. GOST 4960–75. Electrolytic copper powder. Specifications. Introduced: 01.01.1977.
42. GOST 7565–81. Iron, steel and alloys. Sampling for determination of chemical composition. Introduced: 01.01.1982.

Full content Preparation of fullerenes and their derivatives and their introduction into copper alloys