Journals →  Tsvetnye Metally →  2023 →  #7 →  Back

ArticleName Comparative analysis of specific electrical resistivity of sheets of Al – 1.5 % Mn and Al – 1.5 % Mn – 0.5 % Ca alloys
DOI 10.17580/tsm.2023.07.07
ArticleAuthor Korotkova N. O., Doroshenko V. V., Khabibulina A. I., Aksenov A. A.

National University of Science and Technology MISiS, Moscow, Russia:

N. O. Korotkova, Junior Researcher at the Laboratory for Hybrid Nanostructured Materials, e-mail:
V. V. Doroshenko, Junior Researcher at the Laboratory of Catalysis and Hydro carbon Processing
A. I. Khabibulina, Research Project Engineer at the Department of Metal Forming


Moscow Polytechnic University, Moscow, Russia:
A. A. Aksenov, Professor at the Department of Materials


Using calculation and experiment techniques, the authors carried out a comparative analysis of specific electrical resistivity in cold-rolled sheets of Al – 1.5% Mn and Al – 1.5% Mn – 0.5% Ca alloys reduced to 60 and 90% in the course of isothermal soaking at the temperatures of 300, 400, 450 oC, with the maximum annealing time of 96 h. At the temperature of 450 oC, the Al – 1.5 Mn – 0.5 Ca alloy was found to experience a transition from the (Al) + Al6Mn + Al10CaMn2 region to the (Al) + Al10CaMn2 + Al4Ca region. The authors looked at the structure that formed in the Al – 1,5 Mn – 0,5 Ca alloy at 450 oC annealing. It is shown that the size of secondary precipitates of the Al10CaMn2 phase that form during the 96 hours of annealing does not exceed 500 nm. A calculation was carried out of the root-mean-square path of Mn atoms in (Al) at the temperatures of 350, 400, 450 and 500 oC. It is demonstrated that a 3-hour long soaking cycle at 450 oC ensures a root-mean-square distance of Mn that is sufficient for an Al10CaMn2 compound to form in the Al – 1.5 Mn – 0.5 Ca alloy and an Al6Mn compound – in the Al – 1.5 Mn alloy. The factor that defines decomposition of the solid solution of (Al) at the annealing temperatures of 350 and 400 oC includes a rising free energy of phase boundaries, which increases their diffusion permeability. It is shown that, in terms of the least specific electrical resistivity, the most effective regime for the Al – 1.5 Mn – 0.5 Ca alloy includes isothermal soaking at 400 oC, whereas for the Al – 1.5 Mn alloy it is isothermal soaking at 450 oC. High specific electrical resistivity values during isothermal soaking at 450 oC for the Al – 1.5 Mn – 0.5 Ca alloy can be attributed to the phase transition into the (Al) + Al10CaMn2 + Al4Ca region and the formation of an Al10CaMncompound at the (Al) dendritic cell boundaries.
This research was funded by the Russian Science Foundation through Grant No. 22-79-00106,

keywords Wrought aluminium alloys, Al – Ca – Mn system, thermomechanical treatment, specific electrical resistivity, phase composition, microstructure, deformation degree, root-mean-square diffusion distance

1. Hatch J. E. Aluminum: Properties and Physical Metallurgy. Ohio : ASM Metals Park, 1984. 424 p.
2. Kolachev B. A., Elagin V. I., Livanov V. A. Physical metallurgy and heat treatment of non-ferrous metals and alloys : Textbook for university students. 4th revised edition. Moscow : MISiS, 2005. 432 p.
3. Belov N. A. Phase composition of commercial and innovative aluminium alloys. Moscow : MISiS, 2010. 511 p.
4. Belyaev A. I., Bochvar O. S., Buynov N. N. et al. Metallurgy of aluminium and its alloys : Reference book. 2nd edition. Moscow : Metallurgiya, 1983. 280 p.
5. Mondolfo L. F. Aluminium alloys: Structure and properties. Translated from English. Moscow : Metallurgiya, 1979. 640 p.
6. Li Y. J., Arnberg L. Quantitative study on the precipitation behavior of dispersoids in DC-cast AA3003 alloy during heating and homogenization. Acta Materialia. 2003. Vol. 51. pp. 3415–3428. DOI: 10.1016/S1359-6454(03)00160-5
7. Huang H.-W., Ou B.-L. Evolution of precipitation during different homogenization treatments in a 3003 aluminum alloy. Materials & Design. 2009. Vol. 30, Iss. 7. pp. 2685–2692. DOI: 10.1016/j.matdes.2008.10.012
8. Vorontsova L. A. Aluminium and aluminium alloys for electrical applications. Moscow : Energiya, 1971. 224 p.
9. Naumova E. A., Doroshenko V. V., Barykin M. A., Sviridova T. A. et al. Hypereutectic Al – Ca – Mn – (Ni) alloys as natural eutectic composites. Metals. 2021. Vol. 11, Iss. 6. 890. DOI: 10.3390/met11060890
10. Naumova E. A. Use of calcium in alloys: from modifying to alloying. Russian Journal of Non-Ferrous Metals. 2018. Vol. 59, Iss. 3. pp. 284–298. DOI: 10.3103/S1067821218030100
11. Belov N. A., Naumova E. A., Doroshenko V. V., Barykin M. A. Effect of Ni, Mn, Fe and Si additives on the microstructure and phase composition of hypereutectic aluminium-calcium alloys: A comparative analysis. Izvestiya vuzov. Tsvetnaya metallurgiya. 2021. Vol. 27, No. 6. pp. 40–51. DOI: 10.17073/0021-3438-2021-6-40-51
12. Belov N. A., Naumova E. A., Doroshenko V. V., Barykin M. A. Aluminium-based eutectic alloys: New alloying systems. Moscow : “Ore and Metals” Publishing House, 2016. 256 p.
13. Rogachev S. O., Naumova E. A., Sundeev R. V., Tabachkova N. Y. Structural and phase transformations in a new eutectic Al – Ca – Mn – Fe – Zr – Sc alloy induced by high pressure torsion. Materials Letters. 2019. Vol. 243. pp. 161–164. DOI: 10.1016/j.matlet.2019.02.043
14. Belov N. A., Korotkova N. O., Doroshenko V. V., Aksenov A. A. Effect of calcium on electrical resistance and phase composition of Al – 1.5 % Mn alloy. Tsvetnye Metally. 2022. No. 9. pp. 85–91.
15. Vlach M., Stulikova I., Smola B., Piesova J. et al. Effect of cold rolling on precipitation processes in Al – Mn – Sc – Zr alloy. Materials Science and Engineering: A. 2012. Vol. 548. pp. 27–32. DOI: 10.1016/j.msea.2012.03.063
16. Chen S. P., Kuijpers N. C. W., van der Zwaag S. Effect of microsegregation and dislocations on the nucleation kinetics of precipitation in aluminium alloy AA3003. Materials Science and Engineering A. 2003. Vol. 341. pp. 296–306. DOI: 10.1016/S0921-5093(02)00245-9
17. Zhao Q., Zhang H., Qiu F., Jiang Q. C. Strain-induced precipitation kinetics during non-isothermal annealing of Al – Mn alloys. Journal of Alloys and Compounds. 2018. Vol. 735. pp. 2275–2280. DOI: 10.1016/j.jallcom.2017.11.360
18. GOST 11069–2001. Primary aluminium. Grades. Introduced: 01.01.2003.
19. GOST 53777–2010. Master alloys of aluminium. Specifications. Introduced: 01.07.2010.
20. Belov N. A., Akopyan T. K., Shurkin P. K., Korotkova N. O. Comparative analysis of structure evolution and thermal stability of сommercial AA2219 and model Al – 2 wt%Mn – 2 wt%Cu cold rolled alloys. Journal of Alloys and Compounds. 2021. Vol. 864. 158823. DOI: 10.1016/j.jallcom.2021.158823
21. Du Y., Chang Y.A., Huang B., Gong W. Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation. Materials Science and Engineering A. 2003. Vol. 363. pp. 140–151. DOI: 10.1016/S0921-5093(03)00624-5
22. Belov N. A., Akopyan T. K., Korotkova N. O., Shurkin P. K. et al. Structure and heat resistance of high strength Al – 3.3 % Cu – 2.5 % Mn – 0.5 % Zr (wt%) conductive wire alloy manufactured by electromagnetic casting. Journal of Alloys and Compounds. 2022. Vol. 891. 161948. DOI: 10.1016/j.jallcom.2021.161948
23. Zupanic F., Wang D., Gspan C., Boncin T. Precipitates in a quasicrystalstrengthened Al – Mn – Be – Cu alloy. Materials Characterization. 2015. Vol. 106. pp. 93–99. DOI: 10.1016/j.matchar.2015.05.013
24. Bokshteyn B. S. Diffusion in metals. Moscow : Metallurgiya, 1978. 248 p.

Language of full-text russian
Full content Buy