Journals →  Цветные металлы →  2023 →  #7 →  Back

Материаловедение
ArticleName Влияние обработки расплавов наносекундными электромагнитными импульсами на распределение элементов в структуре литых алюмоматричных композитов
DOI 10.17580/tsm.2023.07.08
ArticleAuthor Деев В. Б., Прусов Е. С., Ри Э. Х,, Ким Е. Д.
ArticleAuthorData

Уханьский текстильный университет, Ухань, Китай1 ; Национальный исследовательский технологический университет «МИСиС», Москва, Россия2:

В. Б. Деев, профессор факультета машиностроения и автоматизации1, главный научный сотрудник лаборатории «Ультрамелкозернистые металлические материалы»2, профессор кафедры «Обработка металлов давлением»2, докт. техн. наук, эл. почта: deev.vb@mail.ru


Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых, Владимир, Россия:
Е. С. Прусов, доцент кафедры «Технологии функциональных и конструкционных материалов», канд. техн. наук, эл. почта: eprusov@mail.ru


Тихоокеанский государственный университет, Хабаровск, Россия:
Э. Х. Ри, профессор, заведующий кафедрой «Литейное производство и технология металлов», докт. техн. наук, эл. почта: erikri999@mail.ru
Е. Д. Ким, преподаватель кафедры «Литейное производство и технология металлов», канд. техн. наук, эл. почта: 010848@pnu.edu.ru

Abstract

Одной из перспективных групп литых эндогенно-армированных алюмоматричных композитов являются материалы, роль армирующих частиц в которых выполняют первичные соединения кристаллизационного происхождения, в частности на основе псевдобинарной системы Al – Mg2Si. Однако в условиях традиционных литейно-металлургических процессов первичные кристаллы Mg2Si выделяются в виде дендритоподобных комплексов неблагоприятной морфологии и имеют сравнительно крупные размеры, причем тенденция к их укрупнению усиливается с повышением объемного содержания фазы Mg2Si. В связи с этим для обеспечения достаточного уровня механических и эксплуатационных свойств литых композиционных материалов системы Al – Mg2Si необходимо применение дополнительной модифицирующей обработки. В статье проведена оценка влияния обработки расплавов наносекундными электромагнитными импульсами (НЭМИ) на изменение характера распределения химических элементов в структурных составляющих алюмоматричных композиционных материалов Al – 20 % (мас.) Mg2Si. Показано, что повышение амплитуды облучения до 15 кВ при частоте 1 кГц сопровождалось увеличением содержания магния в α-твердом растворе, а также магния и кремния в псевдобинарной эвтектике (α +Mg2Si), в то время как содержание элементов в первичных кристаллах фазы Mg2Si оставалось неизменным независимо от параметров обработки расплава. Вместе с тем при указанных параметрах обработки наблюдается наиболее высокодисперсная эвтектика. Отмечено, что при облучении расплава НЭМИ сокращается доля локальных участков металлической основы внутри первичных кристаллов Mg2Si, что приводит к увеличению их микротвердости до уровня 600–630 HV. Полученные результаты открывают новые возможности для повышения общей эффективности армирующего действия эндогенной фазы Mg2Si за счет модификации морфологического строения ее кристаллов.

Исследование выполнено за счет гранта Российского научного фонда (проект № 20-19-00687).

keywords Литые алюмоматричные композиты, эндогенное армирование, наносекундные электромагнитные импульсы, элементный состав, микротвердость, структурные составляющие
References

1. Rohatgi P. K., Ajay Kumar P., Chelliah N. M., Rajan T. P. D. Solidification processing of cast metal matrix composites over the last 50 years and opportunities for the future. JOM. 2020. Vol. 72. pp. 2912–2926.
2. Bhowmik A., Dey D., Biswas A. Comparative study of microstructure, physical and mechanical characterization of SiC/TiB2 reinforced aluminium matrix composite. Silicon. 2021. Vol. 13. pp. 2003–2010.
3. Singh K., Singh H., Vardhan S., Mohan S. An overview on the synthesis of aluminium matrix composites using stir casting technique. Materials Today: Proceedings. 2022. Vol. 60, Part 2. pp. 868–872.
4. Raj R., Thakur D. Effect of particle size and volume fraction on the strengthening mechanisms of boron carbide reinforced aluminum metal matrix composites. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2019. Vol. 233, Iss. 4. pp. 1345–1356.
5. Prusov E. S., Deev V. B., Aborkin A. V., Ri E. Kh., Rakhuba E. M. Structural and morphological characteristics of the friction surfaces of in situ cast aluminum matrix composites. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2021. Vol. 15, Iss. 6. pp. 1332–1337.
6. Mortensen A., Llorca J. Metal matrix composites. Annual Review of Materials Research. 2010. Vol. 40, Iss. 1. pp. 243–270.
7. Parikh V. K., Badheka V. J., Badgujar A. D., Ghetiya N. D. Fabrication and processing of aluminum alloy metal matrix composites. Materials and Manufacturing Processes. 2021. Vol. 36, Iss. 14. pp. 1604–1617.
8. Deev V. B., Prusov E. S., Ri E. H. Physical methods of processing the melts of metal matrix composites: current state and prospects. Russian Journal of Non-Ferrous Metals. 2022. Vol. 63, No. 3. pp. 292–304.
9. Tjong S. C., Ma Z. Y. Microstructural and mechanical characteristics of in situ metal matrix composites. Materials Science and Engineering: R. 2000. Vol. 29, Iss. 3–4. pp. 49–113.
10. Liu X., Liu Y., Huang D., Han Q., Wang X. Tailoring in situ TiB2 particulates in aluminum matrix composites. Materials Science and Engineering: A. 2017. Vol. 705. pp. 55–61.
11. Pandey U., Purohit R., Agarwal P., Kumar Singh S. Study of fabrication, testing and characterization of Al/TiC metal matrix composites through different processing techniques. Materials Today: Proceedings. 2018. Vol. 5, Iss. 2. pp. 4106–4117.
12. Luts A. R., Amosov A. P., Ermoshkin And. A., Ermoshkin Ant. A., Nikitin K. V. et al. Self-propagating high-temperature synthesis of highly dispersed titanium-carbide phase from powder mixtures in the aluminum melt. Russian Journal of Non-Ferrous Metals. 2014. Vol. 55, No. 6. pp. 606–612.
13. Borgonovo C., Apelian D. Processing of lightweight metal matrix composites via in situ gas/liquid reaction. Materials Science Forum. 2011. Vol. 678. pp. 115–123.
14. Akopyan T. K., Belov N. A., Naumova E. A., Letyagin N. V. New in situ Al matrix composites based on Al – Ni – La eutectic. Materials Letters. 2019. Vol. 245. pp. 110–113.
15. Srinivas V., Singh V. Development of in situ as cast Al – Mg2Si particulate composite: Microstructure refinement and modification studies. Transactions of the Indian Institute of Metals. 2012. Vol. 65, Iss. 6. pp. 759–764.
16. Bhandari R., Mallik M., Mondal M. K. Microstructure evolution and mechanical properties of in situ hypereutectic Al – Mg2Si composites. AIP Conference Proceedings. 2019. Vol. 2162. 020145.
17. Prach O., Hornik J., Mykhalenkov K. Effect of the addition of Li on the structure and mechanical properties of hypoeutectic Al – Mg2Si alloys. Acta Polytechnica. 2015. Vol. 55, Iss. 4. pp. 253–259.
18. Li H.-T., Scamans G., Fan Z. Refinement of the microstructure of an Al – Mg2Si hypereutectic alloy by intensive melt shearing. Materials Science Forum. 2013. Vol. 765. pp. 97–101.
19. Nordin N. A., Farahany S., Ourdjini, A., Abu Bakar T. A., Hamzah E. Refinement of Mg2Si reinforcement in a commercial Al – 20% Mg2Si in situ composite with bismuth, antimony and strontium. Materials Characterization. 2013. Vol. 86. pp. 97–107.
20. Lin J., Bai G., Liu Z., Niu L., Li G., Wen C. Effect of ultrasonic stirring on the microstructure and mechanical properties of in situ Mg2Si/Al composite. Materials Chemistry and Physics. 2016. Vol. 178. pp. 112–118.
21. Saffari S., Akhlaghi F. Microstructure and mechanical properties of Al – Mg2Si composite fabricated in situ by vibrating cooling slope. Transactions of Nonferrous Metals Society of China. 2018. Vol. 28, Iss. 4. pp. 604–612.
22. Nikitin K. V., Amosov E. A., Nikitin V. I., Glushchenkov V. A., Chernikov D. G. Theoretical and experimental substantiation of treatment of aluminum-based melts by pulsed magnetic fields. Russian Journal of Non-Ferrous Metals. 2015. Vol. 56, No. 6. pp. 599–605.
23. Nikitin K. V., Nikitin V. I., Timoshkin I. Y., Glushchenkov V. A., Chernikov D. G. Melt treatment by pulsed magnetic fields aimed at controlling the structure and properties of industrial silumins. Russian Journal of Non-Ferrous Metals. 2016. Vol. 57, No. 3. pp. 202–210.
24. Deev V. B., Ri E. Kh., Prusov E. S., Ermakov M. A., Kim E. D. Influence of parameters of melt processing by nanosecond electromagnetic pulses on the structure formation of cast aluminum matrix composites. Russian Journal of Non-Ferrous Metals. 2022. Vol. 63, No. 4. pp. 392–399.
25. ISO 6507–1:2018. Metals and alloys. Vickers hardness test. Part 1. Test method. Published: 10.01.2018.

Language of full-text russian
Full content Buy
Back