Journals →  Eurasian Mining →  2023 →  #1 →  Back

SCIENCE AND INDUSTRY
ArticleName Space technologies of earth remote sensing in applied problems and theoretical studies in mining
DOI 10.17580/em.2023.01.01
ArticleAuthor Raevich K. V., Vokin V. N., Kiryushina E. V., Maglinets Yu. A.
ArticleAuthorData

Siberian Federal University, Krasnoyarsk, Russia:

Raevich K. V., Associate Professor, Candidate of Engineering Sciences, zenkoviv@mail.ru
Vokin V. N., Professor, Candidate of Engineering Sciences
Kiryushina E. V., Associate Professor, Candidate of Engineering Sciences
Maglinets Yu. A., Professor, Candidate of Engineering Sciences

The paper was written with the participation of I. V. Zenkov, Professor, Doctor Engineering Sciences.

Abstract

This paper reviews scientific publications which enable outlining main research areas for practitioners and experts to handle large-scale applied problems in the global mining industry using differenttime resources of satellite surveying. The main challenges for the theoreticians and practitioners to deal with in this respect are the factors of ecology, technology and geodynamics of mineral mining. The research embraces all biosphere and mineral envelopes of the Earth on all continents. Almost all problems have two stages of solution, namely, the processing/interpretation of images and imagery data and the analysis of the initial information with justification of specific recommendations to enhance efficiency of business entities in the mining industry.

keywords Global mining industry, surface mining, Earth Remote Sensing, satellite survey, mining ecology, mineral exploration, methane emission, illegal mining, coal mine fires
References

1. Li X., Lei S., Liu Y. et al. Evaluation of Ecological Stability in Semi-Arid Open-Pit Coal Mining Area Based on Structure and Function Coupling during 2002–2017. Remote Sensing. 2021. Vol. 13(24). 5040.
2. Wang W., Liu R., Gan F. et al. Monitoring and Evaluating Restoration Vegetation Status in Mine Region Using Remote Sensing Data: Case Study in Inner Mongolia, China. Remote Sensing. 2021. Vol. 13(7). 1350.
3. Lobo F. D. L., Souza-Filho P. W. M., Novo E. M. L. d. M. et al. Mapping Mining Areas in the Brazilian Amazon Using MSI/Sentinel-2 Imagery (2017). Remote Sensing. 2018. Vol. 10(8). 1178.
4. Claudia Priscila Wanzeler da Costa, Douglas da Silva Ferreira, Nikolas Jorge Carneiro. Climate extremes along the mining chain over the Eastern Amazon: Projections to 2050. Atmospheric and Climate Sciences. 2021. Vol. 11, No. 1. pp 125–147.
5. Zenkov I. V., Trinh Le Hung, Ganieva I. A. A study of the forest reclamation dynamics at open-pit coal mines in the Irkutsk region using remote sensing data. Ugol. 2021. No. 9(1146). pp. 51–54.
6. Ozaryan Yu. A., Bubnova M. B., Usikov V. I. Technique of remote monitoring of natural–technical systems (in terms of the mining areas of in south of Russia’s Far East). Gornyi Zhurnal. 2020. No. 2. pp. 84–89.
7. Zenkov I. V., Vokin V. N., Kiryushina E. V., Morin A. S. Building the ecosystem on the mined-out land in the Krasnoyarsk Territory. Gornyi Zhurnal. 2019. No. 10. pp. 93–98.
8. Zhang Y., Shen W., Li M., Lv Y. Integrating Landsat Time Series Observations and Corona Images to Characterize Forest Change Patterns in a Mining Region of Nanjing, Eastern China from 1967 to 2019. Remote Sensing. 2020. Vol. 12(19). 3191.
9. Yue Han, Yinghai Ke, Lijuan Zhu et al. Tracking vegetation degradation and recovery in multiple mining areas in Beijing, China, based on timeseries Landsat imagery. GIScience & Remote Sensing. 2021. Vol. 58, Iss. 8. pp. 1477–1496.
10. Bangira T., Alfieri S. M., Menenti M., van Niekerk A. Comparing Thresholding with Machine Learning Classifiers for Mapping Complex Water. Remote Sensing. 2019. Vol. 11(11). 1351.
11. Ermakov D. M., Demenev A. D., Meshcheriakov A. O. Yu., Berezina O. A. Features of the development of a regional water index for monitoring the impact of acid mine water discharges on river systems. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2021. Vol. 18, No. 6. pp. 222–237.
12. Loupian E. A., Konstantinova A. M., Balashov I. V. et al. Development of a system for analyzing the state of environment in areas of large industrial facilities, tailings and dumps. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2020. Vol. 17, No. 7. pp. 243–264.
13. Felipe L. Lobo, Maycira P. F. Costa, Evlyn M. L. M. Novo. Time-series analysis of Landsat-MSS/TM/OLI images over Amazonian waters impacted by gold mining activities. Remote Sensing of Environment. 2015. Vol. 157. pp. 170–184.
14. Sekandari M., Masoumi I, Beiranvand Pour A. et al. Application of Landsat-8, Sentinel-2, ASTER and WorldView-3 Spectral Imagery for Exploration of Carbonate-Hosted Pb-Zn Deposits in the Central Iranian Terrane (CIT). Remote Sensing. 2020. Vol. 12, Iss. 8. 1239.
15. Bolouki S. M., Ramazi H. R., Maghsoudi A. et al. A Remote Sensing-Based Application of Bayesian Networks for Epithermal Gold Potential Mapping in Ahar-Arasbaran Area, NW Iran. Remote Sensing. 2020. Vol. 12, Iss. 1. 105.
16. Yao F., Xu X., Yang J., Geng X. A Remote-Sensing-Based Alteration Zonation Model of the Duolong Porphyry Copper Ore District, Tibet. Remote Sensing. 2021. Vol. 13, Iss. 24. 5073.
17. Chen Q., Zhao Z., Zhou J. et al. New Insights into the Pulang Porphyry Copper Deposit in Southwest China: Indication of Alteration Minerals Detected Using ASTER and WorldView-3 Data. Remote Sensing. 2021. Vol. 13, Iss. 14. 2798.
18. Lobo A., Garcia E., Barroso G. et al. Machine Learning for Mineral Identification and Ore Estimation from Hyperspectral Imagery in Tin–Tungsten Deposits: Simulation under Indoor Conditions. Remote Sensing. 2021. Vol. 13, Iss. 16. 3258.

19. Bedini E. Application of WorldView-3 imagery and ASTER TIR data to map alteration minerals associated with the Rodalquilar gold deposits, southeast Spain. Advances in Space Research. 2019. Vol. 63, Iss. 10, pp. 3346–3357.
20. Beiranvand P. A., Park T-Y. S., Park Y. et al. Landsat-8, Advanced Spaceborne Thermal Emission and Reflection Radiometer, and WorldView-3 Multispectral Satellite Imagery for Prospecting Copper-Gold Mineralization in the Northeastern Inglefield Mobile Belt (IMB), Northwest Greenland. Remote Sensing. 2019. Vol. 11, Iss. 20. 2430.
21. Qin Y., Zhang X., Zhao Z. et al. Coupling relationship analysis of gold content using Gaofen-5 (GF-5) satellite hyperspectral remote sensing data: a potential method in Chahuazhai gold mining area, Qiubei County, SW China. Remote Sensing. 2022. Vol. 14, Iss. 1. 109.
22. Booysen R, Lorenz S., Thiele S. T. et al. Accurate hyperspectral imaging of mineralised outcrops: An example from lithium-bearing pegmatites at Uis, Namibia. Remote Sensing of Environment. 2022. Vol. 269. 112790.
23. Sarvesh Kumar, Sanjit Kumar Pal, Guha A. et al. New insights on Kimberlite emplacement around the Bundelkhand Craton using integrated satellite-based remote sensing, gravity and magnetic data. Geocarto International. 2020. Vol. 37, Iss. 14. pp. 999–1021.
24. Kasmaeeyazdi S., Mandanici E., Balomenos E. et al. Mapping of Aluminum Concentration in Bauxite Mining Residues Using Sentinel-2 Imagery. Remote Sensing. 2021. Vol. 13, Iss. 8. 1517.
25. Sivitskis A. J., Lehner J. W., Harrower M. J. et al. Detecting and Mapping Slag Heaps at Ancient Copper Production Sites in Oman. Remote Sensing. 2019. Vol. 11, Iss. 24. 3014.
26. López-Vinielles J., Fernández-Merodo J.A., Ezquerro P., et al. Combining Satellite InSAR, Slope Units and Finite Element Modeling for Stability Analysis in Mining Waste Disposal Area. Remote Sensing. 2021. Vol. 13, Iss. 10. 2008.
27. Samsonov S, Baryakh A. Estimation of Deformation Intensity above a Flooded Potash Mine Near Berezniki (Perm Krai, Russia) with SAR Interferometry. Remote Sensing. 2020. Vol. 12, Iss. 19. 3215.
28. Ponomarenko M. R., Kutepov Yu. I., Volkov M. A., Grinuk A. P. Satellite methods within integrated land surface deformation monitoring in a mine field. GIAB. 2020. No. 12. pp. 103–113.
29. Narendra Singh, Chatterjee R. S., Dheeraj Kumar et al. Retrieval of precise land surface temperature from ASTER night-time thermal infrared data by split window algorithm for improved coal fire detection in Jharia Coalfield, India. Geocarto International. 2020. DOI: 10.1080/10106049.2020.1753820
30. Ritesh Mujawdiya, Chatterjee R.S., Dheeraj Kumar. MODIS land surface temperature time series decomposition for detecting and characterizing temporal intensity variations of coal fire induced thermal anomalies in Jharia coalfield, India. Geocarto International. 2020. DOI: 10.1080/10106049.2020.1818853
31. Yi Xu, Hongdong Fan, Libo Dang. Monitoring coal seam fires in Xinjiang using comprehensive thermal infrared and time series InSAR detection. International Journal of Remote Sensing. 2021. Vol. 42, Iss. 6. pp. 2220–2245.
32. Trinh L. H., Zablotskii V. R. The Application of LANDSAT Multi-Temporal Thermal Infrared Data to Identify Coal Fire in the Khanh Hoa Coal Mine, Thai Nguyen province, Vietnam. Izvestiya–Atmospheric and Oceanic Physics. 2017. Vol. 53. pp. 1081–1087.
33. Wang L., Yang L., Wang W., Chen B., Sun X. Monitoring Mining Activities Using Sentinel-1A InSAR Coherence in Open-Pit Coal Mines. Remote Sensing. 2021. Vol. 13, Iss. 21. 4485.
34. Zenkov I. V., Morin A. S., Vokin V. N., Kiryushina E. V. Remote sensing of mining and haulage equipment arrangement in Russia: A case-study of the coal and iron ore industry. Eurasian Mining. 2020. No. 2. pp. 46–49.
35. Zenkov I. V., Trinh Le H., Vokin V. N. et al. Ecologico-economic Substantiation of Environmental Remediation of Rock Disposal Dump at the Coal-mining Regions of Siberia and the Far East. Ecology and Industry of Russia. 2021. Vol. 25, Iss. 11. pp. 48–53.
36. Nie X., Hu Z., Ruan M., Zhu Q., Sun H. Remote-Sensing Evaluation and Temporal and Spatial Change Detection of Ecological Environment Quality in Coal-Mining Areas. Remote Sensing. 2022. Vol. 14, Iss. 2. 345.
37. Ma B., Li X., Jiang Z., Pu R., Liang A. et al. Dust Dispersion and Its Effect on Vegetation Spectra at Canopy and Pixel Scales in an Open-Pit Mining Area. Remote Sensing. 2020. Vol. 12, Iss. 22. 3759.
38. Xiao C., Fu B., Shui H., Guo Z., Zhu J. Detecting the Sources of Methane Emission from Oil Shale Mining and Processing Using Airborne Hyperspectral Data. Remote Sensing. 2020. Vol. 12, Iss. 3. 537.
39. Madhuanand L., Sadavarte P., Visschedijk A. J. H. et al. Deep convolutional neural networks for surface coal mines determination from sentinel-2 images. European Journal of Remote Sens. 2021. Vol. 54, Iss. 1. pp. 296–309.
40. Sadavarte P., Pandey S., Maasakkers J. D. et al. Methane Emissions from Superemitting Coal Mines in Australia Quantified Using TROPOMI Satellite Observations. Environmental Science and Technology. 2021. Vol. 55, No. 24. pp. 16573–16580.
41. Isidro C. M., McIntyre N., Lechner A. M., Callow I. Applicability of Earth Observation for Identifying Small-Scale Mining Footprints in a Wet Tropical Region. Remote Sensing. 2017. Vol. 9, Iss. 9. 945.
42. Yungang Cao, Wei Zhang, Xueqin Bai, Kai Chen. Detection of excavated areas in high-resolution remote sensing imagery using combined hierarchical spatial pyramid pooling and VGGNet. Remote Sensing Letters. 2021. Vol. 12, Iss. 12. pp. 1269–1280.
43. Kramarov S. O., Mityasova O. Yu., Khramov V. V. Satellite-based identification of land objects using nonorthogonal representation of source data. GIAB. 2021. No. 4. pp. 154–166.
44. Forkuor G., Ullmann T., Griesbeck M. Mapping and Monitoring Small-Scale Mining Activities in Ghana using Sentinel-1 Time Series (2015-2019). Remote Sensing. 2020. Vol. 12, Iss. 6. 911.
45. Krutskikh N. V. Assessment of nature transformation in the mining influence zone by earth remote sensing data. Gornyi Zhurnal. 2019. No. 3. pp. 88–93.
46. DeWitt J. D., Chirico P. G., O’Pry K. E. et al. Mapping the extent and methods of small-scale emerald mining in the Panjshir Valley, Afghanistan. Geocarto International. 2020. Vol. 37, Iss. 1. pp. 246–267.
47. Cando Jácome M., Martinez-Graña A. M., Valdés V. Detection of Terrain Deformations Using InSAR Techniques in Relation to Results on Terrain Subsidence (Ciudad de Zaruma, Ecuador). Remote Sensing. 2020. Vol. 12, Iss. 10. 1598.
48. Zenkov I. V., Le Hung T., Vokin V. N. et al. Space-based Applications of Remote Sensing in Studying Opencast Mining and Ecology at De posits of Non-ferrous Metal Ore. Ecology and Industry of Russia. 2022. Vol. 26, No. 1, pp. 24–29.

Full content Space technologies of earth remote sensing in applied problems and theoretical studies in mining
Back