ArticleName |
Influence of reversible surface plastic deformation on changes in the grain structure of carbon steel |
Abstract |
The article presents the results of experimental studies to determine the influence of the parameters of reverse surface plastic deformation (SPD) on the distortion of grains of carbon steel 45. To implement the proposed method of finishing and hardening processing, a device has been developed that provides reverse circular motion of the working tool. The experimental results showed that the radial interference and the reverse rotational speed of the working tool (RI) have the greatest effect on the grain structure of the surface layer of the part. An increase in the radial interference from 0.08 to 0.28 mm and a reverse rotational speed of the RI from 60 to 300 strokes/min leads to a decrease in the grain size in the longitudinal direction by 57-61 %, and in the transverse direction by 44-47%, and to an increase in the degree reduction in grain size in the longitudinal direction by 60-85%, and in the transverse direction by 35-68 %. At the same time, the amount of grain distortion increases by 1.8-2.3 times. After reverse SPD, compared with the initial grain size, their value decreases by 85 % in the longitudinal direction and by 68 % in the transverse direction, while the grain distortion increases by 7.1-8.3 times. For the formation of minimum average grain sizes in the surface layer of hardened parts in the longitudinal and transverse directions (about 5.8 and 13.1 μm, respectively), the optimal hardening modes are determined: longitudinal feed 0.08-0.10 mm/rev; workpiece rotation frequency 275-300 rpm; the value of the radial interference 0.25-0.30 mm; reverse speed RI 280-300 strokes/min; the initial installation angle of RI is 90o and the value of the angle of reverse rotation of RI is ±550 - ±60о. |
References |
1. Suslov А. G. The quality of the surface layer of machine parts. Moscow: Mashinostroenie, 2000. 320 p. 2. Smelyanskiy V. М. The mechanics of hardening parts by surface plastic deformation. Moscow: Mashinostroenie, 2002. 300 p. 3. Odintsov L. G. Hardening and finishing of parts by surface plastic deformation. Moscow: Mashinostroenie, 1987. 328 p. 4. Qingzhong Mao, Yanfang Liu, Yonghao Zhao. A review on mechanical properties and microstructure of ultrafine grained metals and alloys processed by rotary swaging. Journal of Alloys and Compounds. 2022. Vol. 896. pp. 163122. DOI: 10.1016/j.jallcom.2021.163122. 5. Kovaleva I. А., Khodosovskaya N. А., Oborov М. V. Influence of metal inequigranularity on the mechanical properties of seamless hot-rolled pipes. Lityo i Metallurgiya. 2020. No. 1. pp. 31–33. 6. Hengjia Zhang, Xiaomin Zhang, Zhipeng Zhao, Hongwu Tang, Bo Zhao. Evolution of the grain size gradient and its effect on the mechanical and electrical properties of metal interconnects. Materials Science in Semiconductor Processing. 2022. Vol. 151. pp. 107406. DOI: 10.1016/j.mssp.2022.107046. 7. Ivanov А. М., Ugurchiev U. Kh., Stolyarov V. V., Petrova N. D., Platonov А. А. Combination of methods of severe plastic deformation of structural steels. Izvestiya vuzov. Chernaya metallurgiya. 2012. No. 6. pp. 54–57. 8. Sharkeev Yu. P., Yaroshenko А. Yu., Danilov V. I., Tolmachev А. I., Uvarkin P. V., Abzaev Yu. А. Microstructure and mechanical properties of nanostructured and ultrafine-grained titanium and zirconium formed by severe plastic deformation. Izvestiya vuzov. Fizika. 2013. Vol. 65. No. 10. pp. 47–53. 9. Shuaixin Zhang, Li Wu, Tao Gu, Yucong Shi et al. Effect of microstructure on the mechanical properties of ultrafine-grained Cu-Al-Ni alloys processed by deformation and annealing. Journal of Alloys and Compounds. 2022. Vol. 923. p. 166413. DOI: 10.1016/j.jallcom.2022.166413 10. Merson E. D., Myagkikh P. N., Klevtsov G. V., Merson D. L., Vinogradov A. Y. Еffect of equalchannel angular pressing (ecap) and current density of cathodic hydrogen charging on hydrogen trapping in the low-alloy steel. Letters on Materials. 2020. Vol. 10, Iss. 2. pp. 152–157. DOI: 10.22226/2410-3535-2020-2-152-157 11. Nagaraj M., Ravi Kumar D., Suresh K. S., Suresh N. Effect of equal channel angular pressing on the microstructure and tribocorrosion characteristics of 316L stainless steel. Vacuum. 2023. Vol. 210. 111908. DOI: 10.1016/j.vacuum.2023.111908 12. Kemin Xue, Zhaoyu Wang, Wenchun Tian, Jiren Dai et al. Effect of deformation behavior on the evolution of microstructure of RAFM steel subject to closed-dual equal channel angular pressing. Fusion Engineering and Design. 2022. Vol. 184. p. 113307. DOI: 10.1016/j.fusengdes.2022.113307 13. Dobatkin S. V., Terentev V. F., Skrottski V., Rybalchenko О. V., Pankova М. N., Prosvirnin D. V., Zolotarev Е. V. Structure and fatigue strength of steel 08Kh18N10T after equal-channel angular pressing and heating. Metally. 2012. No. 6. pp. 45–56. 14. Handbook on surface plastic deformation processes. Vol. 2: monograph. Edited by S. A. Zaydes. Irkutsk: Izdatelstvo IRNITU, 2022. 584 p. 15. Ostanina Т. V., Shveykin А. I., Trusov P. V. Refining the grain structure of metals and alloys under severe plastic deformation: experimental data and mechanisms analysis. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mekhanika. 2020. No. 2. pp. 85–111. 16. Estrin Y., Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Materialia. 2013. Vol. 61. pp. 782–817. DOI: 10.1016/j.actamat.2012.10.038 17. Xiaoye Zhou, Hui Fu, Ji-Hua Zhu, Xu-Sheng Yang. Atomistic simulations of the surface severe plastic deformation-induced grain refinement in polycrystalline magnesium: The effect of processing parameters. Journal of Magnesium and Alloys. 2022. Vol. 10. pp. 1242–1255. DOI: 10.1016/j.jma.2021.01.009 18. Blyumenshteyn V. Yu., Krechetov А. А., Makhalov М. S. Advanced competitive technologies for finishing and hardening treatment by surface plastic deformation. Fundamentalnye i prikladnye problemy tekhniki i tekhnologii. 2012. No. 2-3 (292). pp. 9–15. 19. Zaydes S. А. New methods for surface plastic deformation of cylindrical low rigidity machine parts. Naukoemkie tekhnologii v mashinostroenii. 2018. No. 8 (86). pp. 16–24. 20. Zaydes S. A., Nguen Khyu Khaj. Method for surface plastic deformation of the outer surfaces of bodies of rotation. Patent RF, No. 2758713. Applied: 14.01.2021. Published: 01.11.2021. 21. Zaydes S. A., Nguen Kh. Kh. Influence of parameters of reverse surface plastic deformation on roughness of hardened parts. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. 2023. Vol. 19. No. 1. pp. 120–130. 22. Ali Ahrari, Saber Elsayed, Ruhul Sarker, Daryl Essam, Carlos A. Coello Coello. PyDDRBG: A Python framework for benchmarking and evaluating static and dynamic multimodal optimization methods. SoftwareX. 2022. Vol. 17. 100961. DOI: 10.1016/j.softx.2021.100961 23. Francesco Farina, Andrea Camisa, Andrea Testa, Ivano Notarnicola, Giuseppe Notarstefano. DISROPT: a Python framework for distributed optimization. IFAC-PapersOnLine. 2020. Vol. 53. pp. 2666–2671. DOI: 10.1016/j.ifacol.2020.12.382 24. Benítez-Hidalgo A., Nebro A. J., García-Nieto J., Oregi I., Del Ser J. jMetalPy: A Python framework for multi-objective optimization with metaheuristics. Swarm and Evolutionary Computation. 2019. Vol. 51. 100598. |