Journals →  Non-ferrous Мetals →  2023 →  #1 →  Back

MATERIALS SCIENCE
ArticleName Microstructural modification of in-situ aluminum matrix composites via pulsed electromagnetic processing of crystallizing melt
DOI 10.17580/nfm.2023.01.06
ArticleAuthor Deev V. B., Prusov E. S., Ri E. H.
ArticleAuthorData

Wuhan Textile University, Wuhan, China1 ; Vladimir State University named after Alexander and Nikolay Stoletovs, Vladimir, Russia2:

V. B. Deev*, Professor, Professor of the School of Mechanical Engineering and Automation1, Chief Researcher2, e-mail: deev.vb@mail.ru


Vladimir State University named after Alexander and Nikolay Stoletovs, Vladimir, Russia:

E. S. Prusov, Associate Professor, Department of Functional and Constructional Materials Technology, e-mail: eprusov@mail.ru

 

Pacific National University, Khabarovsk, Russia:
E. H. Ri, Professor, Head of the Department of Foundry Engineering and Metal Technology, e-mail: erikri999@mail.ru

*Correspondence author.

Abstract

Cast hypereutectic Al – Mg2Si in-situ aluminum matrix composites are promising for industrial application as lightweight structural materials with high resistance under conditions of dry and abrasive wear, elevated temperatures and loads. In this work, the effect of melt irradiation by nanosecond electromagnetic pulses during crystallization on the structure formation of Al + 25 wt.% Mg2Si composites was studied. The application of nanosecond electromagnetic pulses to the crystallizing composite melt at the tested frequency parameters (0.5 and 1 kHz) and pulse amplitude (21.7, 31.5, 36.5, 42 kV) allows to decrease the average size of primary Mg2Si particles to values in the range from 40 to 65 μm. It was shown that during irradiation of crystallizing composite melt with frequency 1 kHz and amplitude 21.7 kV the most finely dispersed eutectics of completely rod-like morphology is revealed in the structure of the samples. At these parameters of pulsed electromagnetic processing, a decrease in the average size of Mg2Si particles to 44.12 μm was achieved, while in untreated composites their size averaged 147.69 μm. The observed number of Mg2Si particles in the section field increases by more than an order of magnitude compared to the initial state. The obtained data show a high potential of practical use of the tested technical solutions for the modifying treatment of hypereutectic composites of the Al – Mg2Si system.

This research was funded by the Russian Science Foundation (Project № 20-19-00687).

keywords Cast aluminum matrix composites, crystallization, nanosecond electromagnetic pulses, morphological transformation of the structure
References

1. Mortensen A., Llorca J. Metal Matrix Composites. Annual Review of Materials Research. 2010. Vol. 40, Iss. 1. pp. 243–270.
2. Prusov E., Kechin V., Deev V. Selection of Reinforcing Phases for Aluminum Matrix Composites Using Thermodynamic Stability Criterion. METAL 2020 – 29th International Conference on Metallurgy and Materials, Conference Proceedings. 2020. pp. 1067–1072.
3. Prusov E. S., Deev V. B., Shurkin P. K., Arakelian S. M. The Effect of Alloying Elements on the Interaction of Boron Carbide with Aluminum Melt. Non-Ferrous Metals. 2021. No. 1. pp. 27–33.
4. Tjong S. C., Ma Z. Y. Microstructural and Mechanical Characteristics of In Situ Metal Matrix Composites. Materials Science and Engineering: R. 2000. Vol. 29, Iss. 3-4. pp. 49–113.

5. Pramod S. L., Bakshi S. R., Murty B. S. Aluminumbased Cast In Situ Composites: a Review. Journal of Materials Engineering and Performance. 2015. Vol. 24, Iss. 6. pp. 2185–2207.
6. Prusov E., Deev V., Rakhuba E. Aluminum Matrix In-Situ Composites Reinforced with Mg2Si and Al3Ti. Materials Today: Proceedings. 2019. Vol. 11, Pt. 1. pp. 386–391.
7. Cerit A. A., Karami M. B., Nair F., Yildizli K. Effect of Reinforcement Particle Size and Volume Fraction on Wear Behaviour of Metal Matrix Composites. Tribology in Industry. 2008. Vol. 30, Iss. 3-4. pp. 31–36.
8. Seth P. P., Parkash O., Kumar D. Structure and Mechanical Behavior of In Situ Developed Mg2Si Phase in Magnesium and Aluminum Alloys – a Review. RSC Advances. 2020. Vol. 10, Iss. 61. pp. 37327–37345.
9. Biswas P., Mandal D., Mondal M.K. Micromechanical Response of Al – Mg2Si Composites Using Approximated Representative Volume Elements (RVEs) Model. Materials Research Express. 2019. Vol. 6, Iss. 11. Article No. 1165c6.
10. Bhandari R., Mallik M., Mondal M.K. Microstructure Evolution and Mechanical Properties of In Situ Hypereutectic Al – Mg2Si Composites. AIP Conference Proceedings. 2019. Vol. 2162. Article No. 020145.
11. Slyudova A., Trudonoshyn O., Prach O., Lisovskii V. Morphology and Nucleation of Intermetallic Phases in Casting Al – Mg – Si Alloys. Metallography, Microstructure, and Analysis. 2020. Vol. 9, Iss. 6. pp. 873–883.
12. Khorshidi R., Honarbakhsh-Raouf A., Mahmudi R. Effect of Minor Gd Addition on the Microstructure and Creep
Behavior of a Cast Al–15Mg2Si In Situ Composite. Materials Science and Engineering: A. 2018. Vol. 718. pp. 9–18.
13. Ghandvar H., Idris M. H., Ahmad N., Emamy M. Effect of Gadolinium Addition on Microstructural Evolution and Solidification Characteristics of Al – 15%Mg2Si insitu Composite. Materials Characterization. 2018. Vol. 135. pp. 57–70.
14. Wu X., Zhang G., Wu F., Wang Z. Influence of Neodymium Addition on Microstructure, Tensile Properties and Fracture Behavior of Cast Al – Mg2Si Metal Matrix Composite. Journal of Rare Earths. 2013. Vol. 31, Iss. 3. pp. 307–312.
15. Wu X., Zhang G., Wu F. Microstructure and Dry Sliding Wear Behavior of Cast Al – Mg2Si in-Situ Metal Matrix Composite Modified by Nd. Rare metals. 2013. Vol. 32, Iss. 3. pp. 284–289.
16. Jin Y., Fang H., Wang S., Chen R., Su Y., Guo J. Effects of Eu Modification and Heat Treatment on Microstructure and Mechanical Properties of Hypereutectic Al – Mg2Si Composites. Materials Science and Engineering: A. 2022. Vol. 831. Article No. 142227.
17. Si Y. Effect of Pr Modification Treatment on the Microstructure and Mechanical Properties of Cast Al – Mg2Si Metal Matrix Composite. Advanced Materials Research. 2014. Vol. 936. pp. 23–27.
18. Deev V. B., Prusov E. S., Ri E. H. Physical Methods of Processing the Melts of Metal Matrix Composites: Current State and Prospects. Russian Journal of Non-Ferrous Metals. 2022. Vol. 63, No. 3. pp. 292–304.
19. Prusov E., Deev V., Rakhuba E. Effect of Superheat Melt Treatment on Structure and Mechanical Properties of In-Situ Aluminum Matrix Composites. METAL 2018 – 27th International Conference on Metallurgy and Materials, Conference Proceedings. 2018. pp. 1358–1362.
20. Ko D.-G., Yu G.-H., Youn J.-I., Kim Y.-J. Ultrasonic Effect on Refinement of Mg2Si and Mechanical Properties of In Situ Al – Mg – Si Composites. Advanced Materials Research. 2009. Vol. 79-82. pp. 549–552.
21. Saffari S., Akhlaghi F. Microstructure and Mechanical Properties of Al-Mg2Si Composite Fabricated in-situ by Vibrating Cooling Slope. Transactions of Nonferrous Metals Society of China (English Edition). 2018. Vol. 28, Iss. 4. pp. 604–612.
22. Qin Q. D., Zhao Y. G. Nonfaceted Growth of Intermetallic Mg2Si in Al Melt During Rapid Solidification. Journal of Alloys and Compounds. 2008. Vol. 462, Iss. 1-2. pp. L28-L31.
23. Krymsky V., Shaburova N. Applying of Pulsed Electromagnetic Processing of Melts in Laboratory and Industrial Conditions. Materials. 2018. Vol. 11, Iss. 6. Article No. 954.
24. Deev V. B., Ri E. Kh., Prusov E. S., Ermakov M. A., Kim E. D. Influence of Parameters of Melt Processing by Nanosecond Electromagnetic Pulses on the Structure Formation of Cast Aluminum Matrix Composites. Russian Journal of Non-Ferrous Metals. 2022. Vol. 63, Iss. 4. pp. 392–399.
25. Li Ben Q. Li. Parallel Computation of Multiscale Phenomena in Magnetically-stirred Solidifying Melts. International Journal of Numerical Methods for Heat and Fluid Flow. 2008. Vol. 18, Iss. 2. pp. 131–145.
26. Ban C. Y., Cui J. Z., Ba Q. X., Lu G. M., Zhang B. J. Influence of Pulsed Magnetic Field on Microstructures and Macro-Segregation in 2124 Al-Alloy. Acta Metallurgica Sinica (English Letters). 2009. Vol. 15. pp. 380–384.
27. Edry I., Frage N., Hayun S. The Effect of Pulse Magnetooscillation Treatment on the Structure of Aluminum Solidified Under Controlled Convection. Materials Letters. 2016. Vol. 182. pp. 118–120.
28. Vdovin K. N., Dubski G. A., Egorova L. G. Influence of the Magnetic Field on the Crystallization of Aluminum Melts. Russian Journal of Non-Ferrous Metals. 2018. Vol. 59, Iss. 3. pp. 269–275.
29. Vdovin K. N., Dubsky G. A., Deev V. B., Egorova L. G., Nefediev A. A., Prusov E. S. Influence of a Magnetic Field on Structure Formation During the Crystallization and Physicomechanical Properties of Aluminum Alloys. Russian Journal of Non-Ferrous Metals. 2019. Vol. 60, No. 3. pp. 247–252.
30. Mikolajczak P. Microstructural Evolution in AlMgSi Alloys During Solidification under Electromagnetic Stirring. Metals. 2017. Vol. 7, Iss. 3. Article No. 89.

Full content Microstructural modification of in-situ aluminum matrix composites via pulsed electromagnetic processing of crystallizing melt
Back