Journals →  Gornyi Zhurnal →  2023 →  #5 →  Back

ArticleName Data processing in full-scale in-situ stress testing by overcoring
DOI 10.17580/gzh.2023.05.13
ArticleAuthor Belyakov N. A., Morozov K. V., Emelyanov I. A.

Saint-Petersburg Mining University, Saint-Petersburg, Russia:

N. A. Belyakov, Associate Professor, Candidate of Engineering Sciences
I. A. Emelyanov, Post-Graduate Student,

Research Center for Geomechanics and Mining Problems, Saint-Petersburg Mining University, Saint-Petersburg, Russia:

K. V. Morozov, Head of Geomechanics Laboratory, Candidate of Engineering Sciences


Reliability of a geomechanical forecast is a major objective when designing and operating an underground structure. Assessment of a forecast reliability can use one of two methods. The first method is geomechanical modeling using a selected model capable of correct description of the behavior and properties of real-life mining subjects. The second method is the in-situ stress measurement. The authors present a processing procedure for the overcoring data, including the multivariant numerical modeling and analytical estimation. The key target of the multi-variant numerical modeling is 3D determination of strain-and-displacement patterns in walls of a test well using an elastic model of rock mass. The proposed procedure works within the framework of elasticity theory since the basis of overcoring is the elastic recovery of an element after drilling, i.e. separation from the main rock mass. The stresses and strains correlate linearly by the Hooke law. The lab-scale test data on the strength and deformation properties of cores from the test well are analyzed. Using the found patterns and measured displacements of walls of a rathole at the stage of the full-scale tests, all linear and angular strains are determined and presented as a matrix (strain tensor). The normal and shear stresses are also determined and presented as tensors. The case-study of processing of the full-scale test data (measured displacements of rathole walls) in apatite–nepheline ore host rock is described.

keywords In-situ stress, geomechanical forecast, numerical modeling, analytical estimation, displacements, overcoring

1. Protosenya A. G., Iovlev G. А. Prediction of spatial stress–strain behavior of physically nonlinear soil mass in tunnel face area. GIAB. 2020. No. 5. pp. 128–139.
2. Protosenya A. G., Katerov A. M. Development of stress and strain state of combinedsupp ort for a vertical shaft driven in salt massif. GIAB. 2022. No. 6-1. pp. 100–113.
3. Karasev M. A., Sotnikov R. O. Prediction of the stress state of the shotcreting support under repeated seismic load. Journal of Mining Institute. 2021. Vol. 251. pp. 626–638.
4. Małkowski P., Niedbalski Z. A comprehensive geomechanical method for the assessment of rockburst hazards in underground mining. International Journal of Mining Science and Technology. 2020. Vol. 30, Iss. 3. pp. 345–355.
5. Kozyrev A. A., Semenova I. E., Zemtsovskiy A. V. The variants of advanced unloading zone creation on the deep levels of the Kukisvumchorr deposit. GIAB. 2016. No. 4. pp. 231–245.
6. Karasev M. A., Nguyen T. T. Method for predicting the stress state of the lining of underground structures of quasi-rectangular and arched forms. Journal of Mining Institute. 2022. Vol. 257. pp. 807–821.
7. Protosenya A. G., Vilner M. A. Forecast of stress–strain state of fiber-reinforced concrete support in discontinious rock masses. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta. 2021. No. 5(147). pp. 5–14.
8. Aynbinder I. I., Ovcharenko O. V. Geomechanical behavior of deep-level rock mass in Internatsionalny and Mir mines. GIAB. 2020. No. 11. pp. 57–69.
9. Karasev M. A., Protosenya A. G., Katerov A. M., Petrushin V. V. Analysis of shaft lining stress state in anhydrite–rock salt transition zone. Rudarsko-geološko-naftni zbornik. 2022. Vol. 37, No. 1. pp. 151–162.
10. Protosenya A., Vilner M. Assessment of excavation intersections’ stability in jointed rock masses using the discontinuum approach. Rudarsko-geološko-naftni zbornik. 2022. Vol. 37, No. 2. pp. 137–147.
11. Karasev M. A., Petrushin V. V., Rysin A. I. The hybrid finite/discrete element method in description of macrostructural behavior of salt rocks. GIAB. 2023. No. 4. pp. 48–66.
12. Trushko V. L., Protosenya A. G., Verbilo P. E. Predicting strength of pillars in fractured rock mass during development of apatite-nephelinic ores. ARPN Journal of Engineering and Applied Sciences. 2018. Vol. 13, No. 8. pp. 2864–2872.
13. Karasev M. A., Buslova M. A., Vilner M. A., Nguyen T. T. Method for predicting the stress–strain state of the vertical shaft lining at the drift landing section in saliferous rocks. Journal of Mining Institute. 2019. Vol. 240. pp. 628–637.

14. Eremenko V. A. Stress state modeling of coaxial three-level open stoping in Map3D. GIAB. 2018. No. 11. pp. 5–17.
15. Verbilo P. E., Iovlev G. A., Petrov N. E., Pavlenko G. D. Application of information modeling technologies for surveying support of mining operations. GIAB. 2022. No. 6-2. pp. 60–79.
16. Fairhurst C. Stress estimation in rock: A brief history and review. International Journal of Rock Mechanics and Mining Sciences. 2003. Vol. 40, Iss. 7-8. pp. 957–973.
17. Petr W., Lubomir S., Jan N., Petr K., Tomas K. Determination of stress state in rock mass using strain gauge probes CCBO. Procedia Engineering. 2016. Vol. 149. pp. 544–552.
18. Jingshou Liu, Wenlong Ding, Haimeng Yang, Ruyue Wang, Shuai Yin et al. 3D geomechanical modeling and numerical simulation of in-situ stress fields in shale reservoirs: A case study of the lower Cambrian Niutitang formation in the Cen’gong block, South China. Tectonophysics. 2017. Vol. 712-713. pp. 663–683.
19. Figueiredo B., Cornet F.H., Lamas L., Muralha J. Determination of the stress field in a mountainous granite rock mass. International Journal of Rock Mechanics and Mining Sciences. 2014. Vol. 72. pp. 37–48.
20. Ali Saeidi, Shahriyar Heidarzadeh, Lalancette S., Rouleau A. The effects of in situ stress uncertainties on the assessment of open stope stability: Case study at the Niobec Mine, Queb ec (Canada). Geomechanics for Energy and the Environment. 2021. Vol. 25. 100194. DOI: 10.1016/j.gete.2020.100194
21. Baker W. E., Dove R. C. Construction and Evaluation of a Three-Dimensional Strain Rosette. Experimental Mechanics. 1963. Vol. 3, Iss. 9. pp. 201–206.
22. Baotang Shen, Yi Duan, Xun Luo, van de Werken M., Bongani Dlamini et al. Monitoring and modeling stress state near major geological structures in an underground coal mine for coal burst assessment. International Journal of Rock Mechanics and Mining Sciences. 2020. Vol. 129. 104294. DOI: 10.1016/j.ijrmms.2020.104294
23. Scelsi G., De Bellis M.L., Pandolfi A., Musso G., Della Vecchia G. A step-by-step analytical procedure to estimate the in-situ stress state from borehole data. Journal of Petroleum Science and Engineering. 2019. Vol. 176. pp. 994–1007.
24. Roshan H., Danqi Li, Ismet Canbulat, Regenauer-Lieb K. Borehole deformation based in situ stress estimation using televiewer data. Journal of Rock Mechanics and Geotechnical Engineering. 2023. DOI: 10.1016/j.jrmge.2022.12.016
25. Pudov E., Kuzin E., Efremenkov A. Estimation of impact of rock conditions on the conveyor workings geometry by means of geophysical methods. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 939. 012063. DOI: 10.1088/1757-899X/939/1/012063
26. Bazhenova E. A. Identification of fault zones within an orebody using a set of geophysical methods. GIAB. 2022. No. 5. pp. 67–83.
27. Sosnovskaya E. L., Avdeev A. N. Forecast of the stability of the array of gold ore deposits based on the analysis of core material from exploration core drilling wells. GIAB. 2020. No. 3-1. pp. 216–223.
28. Novikov E. A., Shkuratnik V. I., Zaytsev M. G. Manifestations of Acoustic Emission in Frozen Soils with Simultaneous Influence of Variable Mechanical and Thermal Effects on Them. Journal of Mining Institute. 2019. Vol. 238. pp. 383–391.
29. Mafakheri Bashmagh N., Lin W., Murata S., Foad Yousefi, Radwan A. E. Magnitudes and orientations of present-day in-situ stresses in the Kurdistan region of Iraq: Insights into combined strike-slip a nd reverse faulting stress regimes. Journal of Asian Earth Sciences. 2022. Vol. 239. 105398. DOI: 10.1016/j.jseaes.2022.105398
30. Morozov K. V., Bakhtin E. V., Demekhin D. N. et al. Rock mass stress–strain assessment device. Patent RF, No. 2763565. Applied: 07.07.2021. Published: 30.12.2021. Bulletin No. 1.
31. GOST 21153.2–84. Rocks. Methods for determination of axial compression strength. Moscow : IPK Izdatelstvo standartov, 2001. 8 p.
32. GOST 28985–91. Rocks. Method for determination of deformation characteristics under uniaxial compression. Moscow : IPK Izdatelstvo standartov, 2004. 11 p.
33. Brown E. T. Rock Characterization, Testing & Monitoring: ISRM Suggested Methods. Oxford : Pergamon Press, 1981. 211 p.
34. Jiayi Shen, Murat Karakus, Chaoshui Xu. A comparative study for empirical equations in estimating deformation modulus of rock masses. Tunnelling and Underground Space Technology. 2012. Vol. 32. pp. 245–250.
35. Timoshenko S. P., Goodier J. N. Theory of Elasticity. 3rd ed. New York : McGraw-Hill, 1970. 608 p.

Full content Data processing in full-scale in-situ stress testing by overcoring