Journals →  Gornyi Zhurnal →  2023 →  #5 →  Back

ArticleName Substantiation of pitwall parameters in rock mass with steeply dipping bedding
DOI 10.17580/gzh.2023.05.07
ArticleAuthor Tsirel S. V., Pavlovich A. A., Melnikov N. Ya.

Research Center for Geomechanics and Mining Practice Problems, Saint-Petersburg Mining University, Saint-Petersburg, Russia:

S. V. Tsirel, Senior Researcher, Doctor of Engineering Sciences
A. A. Pavlovich, Head of Laboratory, Candidate of Engineering Sciences,
N. Ya. Melnikov, Researcher, Candidate of Engineering Sciences


The optimal and stable ultimate pitwall limit design is highly critical for safe open pit mining. Currently, open pit mining is carried out increasingly more often in difficult geological conditions, including steeply dipping bedding. Given such conditions, the pitwall slope stability is a challenging problem, and the conventional designs of pitwall parameters lack reliability. Anti-dip bedding slopes deform with origination of large fractures while preserving the overall stability, with the safety factor higher than the standard value in isotropic slope designs. Stability estimation of such slopes should take into account both the load-carrying capacity of a slope and the eventual displacement size. On this basis, and from the joint physical and numerical modeling evidence, a procedure has been developed to determine pitwall parameters starting from the initiation of large fractures, by means of allowable displacement calculation and graphical determination of the stability factor of a slope at any stage of deformation. The procedure proves that the integration of the physical simulation and numerical modeling allows benefitting from both. The physical simulation reveals peculiarities of pitwall deformation. The numerical modeling supports designing in various geological and geotechnical conditions. Collation of the results enables more reliable prediction of slope stability in different conditions much in advance of a limit state.

keywords Pitwall, physical simulation, finite element method, algebraic addition of forces, bedding, safety factor, displacement, toppling

1. Pevzner M. E. Deformation control in open pit mines. Moscow : Nedra, 1978. 255 p.
2. Zhabko A. V. Theory of calculation o f slopes and grounds stability. Analysis, characterization and classification of existing methods for calculating the slopes stability. Izvestiya Uralskogo gosudarstvennogo gornogo universiteta. 2015. No. 4(40). pp. 45–57.
3. Afanasev B. G. Development of scientific framework for stability estimation in bedded adjacent rock mass in open pit coal mines : Theses of Dissertation of Doctor of Engineering Sciences. Leningrad, 1992. 31 p.
4. Afanasev B. G. Slope stability design in case of anti-dip bedding and toppling. Deep Open Pit Mining : Problems and Solutions. All-Russian Conference Proceedings. Krivoy Rog, 1987. pp. 77–78.
5. Sapozhnikov V. T., Afanasev B. G. Approximate slope stability design in rock mass with steeply dipping bedding. Rock Mass Displacement and Deformation in Mineral Mining with Regard to Structure and Mechanical Properties : Collection of Scientific Papers. Leningrad : VNIMI, 1982. pp. 35–39.
6. Novikova L. K. Optimal coal pitwall design in the conditions of steeply dipping bedding : Theses of Dissertation of Candidate of Engineering Sciences. Karaganda, 1994. 21 p.
7. Novikova L. K. Deformation of steeply dipping bedding pitwall. Efficient Subsoil Use and Land Reclamation at Mines : Collection of Scientific Papers. Karaganda : KarPTI, 1988. pp. 53–55.
8. Novikova L. K. Assessment of the behavior and parameters of steeply dipping bedding pitwall in Ekibastuz. Rock Mass and Ground Movements in Mineral Mini ng : Collection of Scientific Papers. Karaganda : KarPTI, 1989. pp. 52–57.
9. Zoteev V. G., Zoteev O. V. Aberrant defomation of deep pitwall and prevention activities. Gornyi Zhurnal. 2007. No. 1. pp. 40–45.
10. Read J., Stacey P. Guidelines fo r open pit slope design. Collingwood : CSIRO Publishing, 2009. 487 p.

11. Federal Industrial Safety Code : Slope Stability and Safe ty Practice for Pitwall and Dumps. Approved by Rostekhnadzor, Order No. 439 dated 13 November 2020. Available at: (accessed: 15.12.2022).
12. Mustafin M. G., Sannikova A. P., Yushmanov P. I. Valuation of sustainable of pit wall. Journal of Mining Institute. 2012. Vol. 198. pp. 198–201.
13. Mwango Bowa V., Yuanyou Xia, Minjia Yan, Eugie Kabwe. Toppling of the jointed rock slope with counter -tilted weak planes influenced by the response to local earthquakes. International Journal of Mining and Mineral Engineering. 2018. Vol. 9, No. 4. pp. 302–320.
14. Chaoyi Sun, Congxin Chen, Yun Zheng, Kaizong Xia, Wei Zhang. Topping Failure Analysis of Anti-Dip Bedding Rock Slopes Subjected to Crest Loads. International Journal of Geotechnical and Geological Engineering. 2018. Vol. 12, No. 11. pp. 670–678.
15. Verbilo P. E., Vilner M. A. Study of t he jointed rock mass uniaxial compression strength anisotropy and scale effect. GIAB. 2022. No. 6-2. pp. 47–59.
16. Kutepov Yu. Yu., Borger E. B. Numerical modeling of the rock mass subsidence applied to geological conditions of the mine named after Ruban in Kuzbass. GIAB. 2017. No. 5. pp. 66–75.
17. Karasev M. A. Geomechanical behavior prediction in bedded rock mass in complex 3D geometry underground construction under conditions of compact urban planning : Dissertation of Doctor of Engineering Sciences. Saint-Petersburg, 2017. 307 p.
18. Karasev M. A., Buslova M. A., Vilner M . A., Nguyen T. T. Method for predicting the stressstrain state of the vertical shaft lining at the drift landing section in saliferous rocks. Journal of Mining Institute. 2019. Vol. 240. pp. 628–637.
19. Sablin M. V., Borger E. B., Kutepov Yu. I., Kutepov Yu.Yu., Mironov A. S. Geomechanical study of coal series mining in the Ruban Mine under hydraulic fill of open pit. GIAB. 2019. No. 6. pp. 124–135.
20. Bagautdinov I. I., Belyakov N. A., Sevryukov V. V., Rasskazov M. I. Hardening soil model in prediction of plastic deformation zone in soft rock mass of Yakovlevo iron ore deposit. Gornyi Zhurnal. 2022. No. 12. pp. 16–21. DOI: 10.17580/gzh.2022.12.03
21. Verbilo P., Karasev M., Belyakov N., Iovlev G. Experimental and numerical research of jointed rock mass anisotropy in a three-dimensional stress field. Rudarsko-geološkonaftni zbornik. 2022. Vol. 37, No. 2. pp. 109–122.
22. Clayton C., Jackson A., Price J., Bidwell A., Elmo D. Case study: Analysis of a highwall toppling failure and development of a successful mine re-entry plan using RS2, RocFall and Dan-W at a coal mine in Canada. Slope Stability 2020 : Proceedings of the 2020 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering. Perth : Australian Centre for Geomechanics, 2020. pp. 383–398.
23. Nguyen Tai Tien, Karasev M. A., Vilner M. A. Study of the stress-strain state in the subrectangular tunnel. Geotechnics for Sustainable Infrastructure Development : Conference Proceedings. Series: Lecture Notes in Civil Engineering. Singapore : Springer, 2020. Vol. 62. pp. 383–388.
24. Protosenya A. G., Alekseev A. V., Verbilo P. E. Prediction of the stress-s train state and stability of tunnel face at the intersection of distur bed zones of the soil mass. Journal of Mining Institute. 2022. Vol. 254. pp. 252–260.
25. Ignatev S. A., Sudarikov A. E., Imashev A. Zh. Modern Mathematical Forecast Methods of Maintenance and Support Conditions for Mining Tunnel. Journal of Mining Institute. 2019. Vol. 238. pp. 371–375.
26. Kuznetsov G. N., Budko M. N., Vasilev Yu. I., Shklyarskiy M. F., Yurevich E. G. Modeling phenomena induced by rock pressure. Leningrad : Nedra, 1968. 279 p.
27. Kuznetsov G. N., Budko M. N., Filippova A. A., Shklyarskiy M. F. Model analysis of phenomena induced by rock pressure. Moscow : Ugletekhizdat, 1959. 283 p.
28. Glushikhin F. P., Kuznetsov G. N., Shklyarskiy M. F., Pavlov V. N., Zolotnikov M. S. Modeling in geomechanics. Moscow : Nedra, 1991. 240 p.
29. Tsirel S. V., Pavlovich A. A., Melnikov N. Ya., Zuev B. Yu. Physical Modeling of Deformation Processes in Pit Slope with Steep Bedding. Journal of Mining Science. 2019. Vol. 55, No. 3. pp. 364–370.
30. Zuev B. Yu., Zubov V. P., Fedorov A. S. Application prospects for models of equivalent materials in studies of geomechanical processes in underground mining of solid minerals. Eurasian Mining. 2019. No. 1. pp. 8–12. DOI: 10.17580/em.2019.01.02
31. Zuev B. Yu. Physical modelling of geomechanical processes in block-hierarchial rock mass based on unified integrated similarity condition. GIAB. 2014. No. 4. pp. 356–360.
32. Kuranov A. D., Bagautdinov I. I., Kotikov D. A., Zuev B. Yu. Integrated approach to safety pillar stability in slice mining in the Yakovlevo deposit. Gornyi Zhurnal. 2020. No. 1. pp. 115–119. DOI: 10.17580/gzh.2020.01.23
33. Zuev B. Yu. Methodology of modeling nonlinear geomechanical processes in blocky and layered rock masses on models made of equivalent materials. Journal of Mining Institute. 2021. Vol. 250. pp. 542–552.
34. Zuev B. Yu., Istomin R. S., Kovshov S. V., Kitsis V. M. Physical modeling the formation of roof collapse zones in Vorkuta coal mines. Bulletin of The Mineral Research and Exploration. 2020. Vol. 162, Iss. 162. pp. 225–234.
35. Rocscience RS2. Version 9.030. Rocscience Inc., 2019. Available at: (accessed: 15.12.2022).

Full content Substantiation of pitwall parameters in rock mass with steeply dipping bedding