ArticleName |
Understanding the possibility of using secondary raw materials when smelting copper sulphide concentrates in Almalyk MMC’s Vanyukov furnace |
ArticleAuthorData |
Almalyk Branch of MISiS, Almalyk, Uzbekistan:
M. M. Yakubov, Professor at the Metallurgy Department, Doctor of Technical Sciences
Institute of Mineral Resources, Almalyk, Uzbekistan: Kh. Yu. Dzhumaeva, Doctoral Student
Almalyk MMC JSC, Almalyk, Uzbekistan: I. S. Umaraliev, Chief Engineer of the Copper Smelter
Tashkent State Technical University, Tashkent, Uzbekistan: Sh. A. Mukhamedzhanova, Associate Professor at the Metallurgy Department, e-mail: shoira.muhamet@gmail.com |
Abstract |
This paper describes a study that looked at utilizing secondary raw materials in copper production at Almalyk MMC. Because the site relies on autogenous smelting processes, a large amount of converter slags is generated. A part of the slags is processed in a reverberatory furnace, while the rest of them is dumped and then sent to a concentrator plant. Converter slag that contains 2.5 to 3.5% of copper is considered secondary raw material, and, together with ore (which contains 0.22 to 0.33% of copper), it goes through another concentration cycle and the resultant concentrate is then smelted. The end-to-end recovery of blister copper does not exceed 50%. Such low recovery of copper made it a relevant problem to find efficient ways for raising the recovery of copper from converter slags. For this purpose, the authors developed a two-stage process for processing converter slag in the Vanyukov furnace operated by Almalyk MMC while utilizing clinker as the secondary raw material. To date, more than 475 th. tons of clinker have been accumulated in the dumps. Clinker is used as a reducing agent for magnetite contained in converter slag during copper matte converting and as an additional material for recovering noble metals during Vanyukov furnace smelting of copper sulphide concentrates. Converter slag contains more than 50% of reducing elements in the form of metallic iron and carbon, as well as gold and silver in the amounts of 2.7 to 3.5 and 160 to 250 g/t, respectively. Up to 95% of them can be recovered into blister copper. |
References |
1. Khursanov A. K h. Almalyk MMC: History, prospects and the problems of processing man-made deposits. International conference proceedings. Almalyk, 19.04.2019. pp. 3–15. 2. Khudoyarov S. R., Yakubov M. M., Pirmatov R. Kh., Valiev Kh. R. Technogenic resources of ferrous metallurgy and their complex processing in the conditions of JSC Uzmetkombinat. Chernye Metally. 2022. No. 2. pp. 67–71. DOI: 10.17580/chm.2022.02.12 3. Bellemans I., De Wilde E., Moelans N., Verbeken K. Metal losses in pyrometallurgical operations — a review. Advances in Colloid and Interface Science. 2018. Vol. 255. pp. 47–63. 4. Tlotlo S. G., Gwiranai D., Tirivaviri A. M., Tebogo M., Godfrey D. Environmental and socioeconomic impact of copper slag — a review. Crystals. 2021. Vol. 11. 1504. DOI: 10.3390/cryst11121504 5. Busolic D., Parada F., Parra R., Sanchez M., Palacios J. et al. Recovery of iron from copper flash smelting slags. Mineral Processing and Extractive Metallurgy. 2011. Vol. 120, Iss. 1. pp. 32–36. DOI: 10.1179/037195510X12772935654945 6. Gabasianea T. S., Danhaa G., Mamvuraa T. A., Mashifanab T., Dzinomwac G. Characterization of copper slag for beneficiation of iron and copper. Heliyon. 2021. Vol. 7, Iss. 4. e06757. DOI: 10.1016/j.heliyon.2021.e06757 7. Isroilov A. T., Khasanov U. A., Bekbutaev A. N., Mutalibkhonov S. S. A review and study on the solubility of copper in copper smelting slags. Gornyy vestnik Uzbekistana. 2020. No. 2. pp. 81–84. 8. Askarova N. M., Samadov A. U. Processability of copper slags using hydrometallurgical processes. Vestnik nauki i obrazovaniya. 2020. No. 10. pp. 36–40. 9. Kholikulov D. B., Yakubov M. M., Mukhametdzhanova Sh. A., Bekbutaev A. N. Development of technology for extracting metals from process solutions by ion flotation. Tsvetnye Metally. 2022. No. 6. pp. 19–24. DOI: 10.17580/tsm.2022.06.01 10. Mamonov S. V., Gazaleeva G. I., Dresvyankina T. P., Volkova S. V. Processability of dump copper slags enhanced by means of their slow cooling and ultrafine grinding. Izvestiya vuzov. Gornyy zhurnal. 2018. No. 2. pp. 83–90. 11. Tsemekhman L. Sh., Paretskiy V. M. Modern processing techniques for copper-nickel sulphide concentrates: A review. Tsvetnye Metally. 2020. No. 1. pp. 24–31. DOI: 10.17580/tsm. 2020.01.04 12. Bacedoni M., Moreno I., Ríos G. Copper flash smelting process balance modeling. Metals. 2020. Vol. 10, Iss. 9. 1229. DOI: 10.3390/met10091229 13. Vanyukov A. V., Bystrov V. P., Vaskevich A. D. Bath smelting. Moscow : Metallurgiya, 1988. 208 p. 14. Vanyukov A. V., Zaytsev V. Ya. Non-ferrous metallurgy slags and mattes. Moscow : Metallurgiya, 1969. 406 p. 15. Kupryakov Yu. P. Reverberatory smelting of copper slags. Moscow : Metallurgiya, 1976. 350 p.
16. Selivanov E. N., Gulyaeva R. I., Toloknov D. A. Precipitation of magnetite during Vanyukov furnace smelting of copper-zinc concentrates. Tsvetnaya metallurgiya. 2010. No. 7. pp. 3–9. 17. Dosmukhamedov N. K., Fedorov A. N., Zholdasbay Е. Е. Distribution of Cu, Pb, Zn and As between the products of the two-stage reduction depletion of high-copper slags. Tsvetnye Metally. 2019. No. 7. pp. 30–35. DOI: 10.17580/tsm.2019.07.03 18. Sokolovskaya L. V., Kvyatkovskiy S. A., Kozhakhmetov S. M., Semenova A. S., Seisembayev R. S. Effect of reducing agent on structure and thermal properties of autogenous copper sulfide concentrate smelting slags. Metallurgist. 2021. Vol. 65. pp. 529–537. 19. Zaytsev V. Ya., Udalov L. K., Yakubov M. M., Genevska T. N. On possible use of Waelz clinker for slag depletion. Tsvetnye Metally. 1984. No. 4. pp. 19–23. 20. Yakubov M. M., Abdukadyrov A. A., Mukhamedzhanova Sh. A., Ekubov O. M. Inclusion of secondary raw materials in the production circuit at Almalyk MMC. Tsvetnye Metally. 2022. No. 5. pp. 36–40. DOI: 10.17580/tsm.2022.05.04 |