Journals →  Цветные металлы →  2023 →  #4 →  Back

Автоматизация горно-обогатительных процессов
ArticleName Опыт использования анализатора ВАЗМ-1М в системах контроля и управления трубными мельницами и измельчительными переделами мельница – гидроциклон
DOI 10.17580/tsm.2023.04.09
ArticleAuthor Соколов И.В., Морозов В. В., Васильев В. В., Лебедик Е. А.
ArticleAuthorData

АО «Союзцветметавтоматика им. Топчаева В. П.», Москва, Россия:

И. В. Соколов, заведующий сектором ТО по внедрению АСУ ТП, эл. почта: Sokolov@scma.ru

 

Национальный исследовательский технологический университет «МИСиС», Москва, Россия:

В. В. Морозов, профессор, докт. техн. наук, эл. почта: dchmggu@mail.ru

 

Санкт-Петербургский горный университет, Санкт-Петербург, Россия:

В. В. Васильев, декан факультета аспирантуры и докторантуры, канд. техн. наук, эл. почта: Vasilev_VV@pers.spmi.ru
Е. А. Лебедик, ассистент кафедры автоматизации технологических процессов и производств, канд. техн. наук, эл. почта: Lebedik_EA@pers.spmi.ru

Abstract

Рассмотрена особенность задачи контроля и управления работой трубных мельниц, заключающаяся в том, что это оборудование последовательно совмещает две функции процесса измельчения — собственно измельчение исходного продукта (1-я камера) и его доизмельчение до требуемой крупности (2-я камера). Сделан вывод о том, что контроль работы трубных мельниц необходимо проводить раздельно в каждой камере, но синхронно по времени, чтобы можно было контролировать не только нагрузочные и технологические параметры процесса, но и взаимосвязь работы камер (зон). Обосновано, что решить задачу раздельного, но синхронного контроля работы камер (зон) трубных мельниц можно с помощью виброакустического анализатора загрузки мельниц ВАЗМ-1М разработки АО «Союзцветметавтоматика им. Топчаева В. П.». В этом приборе реализован метод контроля технологической нагрузки мельницы, основанный на наличии корреляционной связи между параметрами ее объемной загрузки технологическими компонентами (исходным сырьем, мелящими телами, содовым раствором) и уровнем ее шумового поля (по вибрационному и/или акустическому компоненту). Приведены результаты работы анализатора ВАЗМ-1М при его установке на однокамерную и двухкамерную мельницы на объектах ООО «БазэлЦемент-Пикалево» и АО «РУСАЛ Краснотурьинск».

keywords Трубная мельница, шаровая мельница, заполнение, производительность, виброакустический шум, анализатор загрузки, корреляция, технологическая нагрузка, варианты загрузки, камера, помол
References

1. Boikov A. V., Savelev R. V., Payor V. A. et al. The control method concept of the bulk material behavior in the pelletizing drum for improving the results of DEM-modeling. CIS Iron and Steel Review. 2019. No. 1. pp. 10–13. DOI: 10.17580/cisisr.2019.01.02
2. Fedorova E., Pupysheva E., Morgunov V. Modelling of red-mud particlesolid distribution in the feeder cup of a thickener using the combined CFDDPM approach. Symmetry. 2022. Vol. 14. DOI: 10.3390/sym14112314
3. Beloglazov I. I., Sabinin D. S., Nikolaev M. Yu. Modeling the disintegration process for ball mills using DEM. Mining Informational and Analytical Bulletin. 2022. No. 6–2. pp. 268–282. DOI: 10.25018/0236_1493_2022_62_0_268
4. Kashin D. A., Kulchitskiy A. A. Image-based quality monitoring of metallurgical briquettes. Tsvetnye Metally. 2022. No. 9. pp. 92–98. DOI: 10.17580/tsm.2022.09.13
5. Shestakov A. K., Petrov P. A., Nikolaev M. Y. Automatic system for detecting visible emissions in a potroom of aluminum plant based on technical vision and a neural network. Metallurgist. 2023. DOI: 10.1007/s11015-023-01445-z
6. Vasilyeva N., Fedorova E., Kolesnikov A. Big data as a tool for building a predictive model of mill roll wear. Symmetry. 2021. Vol. 13. DOI: 10.3390/sym13050859
7. Nguyen H. H., Bazhin V. Y. Optimization of control system for electrolytic copper refining with digital twin during dendritic precipitation. Metallurg. 2023. No. 1. pp. 49–56. DOI: 10.52351/00260827_2023_01_49
8. Bazhin V., Masko O. Monitoring of the behaviour and state of nanoscale particles in a gas cleaning system of an ore-thermal furnace. Symmetry. 2022. Vol. 14. DOI: 10.3390/sym14050923
9. Zhukovskiy Y. L., Korolev N. A., Malkova Y. M. Monitoring of grinding condition in drum mills based on resulting shaft torque. Journal of Mining Institute. 2022. Vol. 256. pp. 686–700. DOI: 10.31897/pmi.2022.91
10. Prokhorenko E., Klepikov V., Lytvynenko V., Khaymovich P. et al. Diagnostics of processes of wear of materials of ball-tube mills. Eastern-European Journal of Enterprise Technologies. 2015. No. 1. DOI: 10.15587/1729-4061.2015.36638
11. Hambric S. A., Sung S. H., Nefske D. J. Engineering vibroacoustic analysis: methods and applications. Engineering Vibroacoustic Analysis: Methods and Applications. 2014. DOI: 10.1002/9781118693988
12. Ulitenko K. Ya., Sokolov I. V., Markin R. P., Naydenov A. P. Automation of comminution processes in concentration and metallurgy. Tsvetnye Metally. 2005. No. 10, Special issue. pp. 54–59.
13. Fahy F., Gardonio P. Sound and structural vibration. Sound and Structural Vibration. 2007. DOI: 10.1016/B978-0-12-373633-8.X5000-5
14. Wada T., Uematsu T., Shiomi H., Osaki K. et al. Prediction of power of a vibration rod mill during cellulose decrystallization processing by DEM. Advanced Powder Technology. 2021. Vol. 32, Iss. 10. DOI: 10.1016/j.apt.2021.08.027
15. Morozov V. V., Topchaev V. P., Ulitenko K. Ya., Ganbaatar Z. et al. Development and application of automated systems of control of mineral dressing processes. Moscow : “Ore and Metals” Publishing House, 2013. pp. 100–106.
16. Feng L., Yang F., Zhang W., Tian H. Model predictive control of duplex inlet and outlet ball mill system based on parameter adaptive particle swarm optimization. Mathematical Problems in Engineering. 2019. DOI: 10.1155/2019/6812754
17. le Roux J. D., Steinboeck A., Kugi A., Craig I. K. Steady-state and dynamic simulation of a grinding mill using grind curves. Minerals Engineering. 2020. Vol. 152. pp. 1–21. DOI: 10.1016/j.mineng.2020.106208
18. Lvov V. V., Chitalov L. S. Modern trends in the design of processes and equipment for grinding of ores of non-ferrous metals. Tsvetnye Metally. 2020. No. 10. pp. 20–26. DOI: 10.17580/tsm.2020.10.03
19. Asbjornsson G., Tavares L. M., Mainza A., Yahyaei M. Different perspectives of dynamics in comminution processes. Minerals Engineering. 2022. Vol. 176. pp. 1–9. DOI: 10.1016/j.mineng.2021.107326
20. Dmitrak Yu. V. Motion of grinding load in ball mills. Vektor GeoNauk. 2021. Vol. 4, No. 1. pp. 28–36. DOI: 10.24411/2619-0761-2021-10003
21. Verdiyan M. A., Golovin E. N., Lesikhina A. I. et al. Partitioned tube mills. Tsement. 1987. No. 7. pp. 20–21.
22. Kremcheev E. A., Kremcheeva D. A. Methodological approaches to controlling the feed breakage process in drum and tube mills based on the results of vibroacoustic diagnostics. Journal of Industrial Pollution Control. 2017. Vol. 33, Iss. 1. pp. 787–791.
23. Strasser S. Current status of the comminution process developed by KHD Humboldt Wedag AG. Tsement i ego primenenie. 2002. No. 1. pp. 27–30.
24. Duda V. Cement. Moscow : Stroyizdat, 1981. 464 p.
25. Lepikhova V. A., Lyashenko N. V., Chibinev N. N., Vyaltsev A. V. et al. Theoretical substantiation of the principles of continuous control of grinding equipment modes at the stage of cereal formation. IOP Conference Series: Earth and Environmental Science. 2022. Vol. 979, Iss. 1. DOI: 10.1088/1755-1315/979/1/012061
26. Adambaev M. D., Baynazarova L. A., Togzhanova Zh. K. A method of coherent by-chamber feed control for two-chamber separator mill and a device to implement it. Certificate of authorship RK, No. 15804. Published: 15.06.2005.
27. Litvinenko V. S., Petrov E. I., Vasilevskaya D. V., Yakovenko A. V. et al. Analyzing the role of the state in the mineral resources management. Journal of Mining Institute. 2023. Vol. 259. pp. 95–111. DOI: 10.31897/PMI.2022.100
28. Vibroacoustic mill charge analyzer VAZM-1M. Available at: http://www.scma.ru/ru/products/2-444.html
29. Demin A. V., Sokolov I. V., Khaymovskiy S. S. Soyuztsvetmetavtomatika process automation solutions for cement industry. TsementInform. 2020. No. 2. pp. 6, 7.
30. Sokolov I. V., Kuzyakov A. V. On the problem of control over the primary grinding mill ball charging. Tsvetnye Metally. 2021. No. 3. pp. 17–22.
31. Damba-Ochir D., Kimyaev I. T., Ulitenko K. Ya. The concept behind a grinding control system built on the basis of vibroacoustic mill charge analyzer VAZM-1M. Tsvetnye Metally. 2003. No. 10. pp. 112–115.
32. Yalin Wang, Xiaofang Chen, Weihua Gui, Chunhua Yang et al. A hybrid multiobjective differential evolution algorithm and its application to the optimization of grinding and classification. Mathematical Approaches in Advanced Control Theories. 2013. Vol. 2013. DOI: 10.1155/2013/841780
33. Tie Qiang Sun, Cui Xue Xie, Zhi Qi Qiu. Iron ore grinding energy conservation research based on neural network. Applied Mechanics and Materials. 2013. Vol. 385–386. pp. 1722–1725. DOI: 10.4028/www.scientific.net/AMM.385-386.1722
34. Yehorov V. System analysis of the technological processes stability. Revista Româna de Informatica si Automatica. 2019. Vol. 29, Iss. 2. pp. 49–62.
35. Tuz A. A., Sanaeva G. N., Prorokov A. E., Bogatikov V. N. Grinding process control and key automation areas. Naukovedenie. 2016. Vol. 8, No. 2. DOI: 10.15862/92TVN216

Full content Опыт использования анализатора ВАЗМ-1М в системах контроля и управления трубными мельницами и измельчительными переделами мельница – гидроциклон
Back