Journals →  Tsvetnye Metally →  2023 →  #2 →  Back

MATERIALS SCIENCE
ArticleName Effect of ultrasonic treatment of the melt on the strength and the rate of bioresorption of Mg – 4 Zn – 1 Ca alloys for medical applications
DOI 10.17580/tsm.2023.02.10
ArticleAuthor Monogenov A. N., Marchenko E. S., Baygonakova G. A., Khrustalev A. P.
ArticleAuthorData

Tomsk State National Research University, Tomsk, Russia:

A. N. Monogenov, Senior Researcher at the Laboratory of Superelastic Biointerfaces at the Science Office, Candidate of Physics & Mathematics Sciences, e-mail: monogenov@mail.ru
E. S. Marchenko, Head of the Laboratory for Medical Alloys and Shape Memory Implants at the Siberian Physical-Technical Institute, Associate Professor, Candidate of Physics & Mathematics Sciences
G. A. Baygonakova, Senior Researcher at the Laboratory for Medical Alloys and Shape Memory Implants at the Siberian Physical-Technical Institute, Candidate of Physics & Mathematics Sciences
A. P. Khrustalev, Senior Researcher at the Laboratory for Metallurgical Nanotechnology at the Science Office, Candidate of Physics & Mathematics Sciences

Abstract

Magnesium alloys serve as a promising material for making implants as they are capable of bioresorption after they have fulfilled their fixation function, and thus a part of the implant is gradually replaced with new regenerated bone tissue with no negative impact on a living organism. Pure magnesium (99.5%), metallic zinc (99.9%) and calcium (99.9%) were used as initial materials for this research. Having been exposed to the ultrasonic action of a magnetostrictive water-cooled transducer, the Mg – 4 Zn – 1 Ca alloys were examined for their phase composition, microstructure, surface topology and surface potential, strength and the rate of bioresorption. A correlation was established between the volume fraction of the second phase Mg6Ca2Zn3 along the boundaries of dendritic cells and the rate of bioresorption in a synthetic culture medium. Ultrasonic treatment was found to inhibit the bioresorption of the Mg – 4 Zn – 1 Ca alloys by 18 times while enhancing their structural and phase homogeneity. The latter manifests itself as a reduced amount of interstitial impurities in the α-Mg grains, reduced volume fraction of the β-phase Mg6Ca2Zn3 at the boundaries of dendritic cells and reduced roughness. At the same time, a growth of the surface potential is noted following ultrasonic treatment of the melt. The lattice parameter a, the unit cell volume V and the с/a ratio of the master α-Mg phase drop after an ultrasonic impact. A growth in the ultimate compression strength and the maximum strain before fracture was registered following an ultrasonic impact. After ultrasonic treatment, the Mg – 4 Zn – 1 Ca alloys manifest more stable mechanical characteristics with a minimal variation of values.
This research was funded by the Ministry of Science and Higher Education of the Russian Federation under Agreement No. 075-15-2021-1384.

keywords Magnesium alloys, biodegradation, ultrasonic treatment, biomedical application, mechanical properties, phase composition, dendritic structure
References

1. Xu Z., Smith C., Chen S., Sankar J. Development and microstructural characterizations of Mg – Zn – Ca alloys for biomedical applications. Materials Science and Engineering B. 2011. Vol. 176, Iss. 20. pp. 1660–1665. DOI: 10.1016/ j.mseb.2011.06.008.
2. Li Y., Li M., Hu W. et al. Biodegradable Mg – Ca and Mg – Ca – Y alloys for regenerative medicine. Materials Science Forum. 2010. Vol. 654–656. pp. 2192–2195. DOI: 10.4028/www.scientific.net/MSF.654-656.2192.
3. Koltygin A. V., Bazhenov V. E., Khasenova R. S., Komissarov A. A., Bazlov A. I., Bautin V. A. Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys. International Journal of Minerals, Metallurgy and Materials. 2019. Vol. 26, No. 7. pp. 858–868. DOI: 10.1007/s12613-019-1801-1.
4. Cai S. H., Lei T., Lin F., Feng F. F. Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg – Zn alloys. Materials Science and Engineering: C. 2012. Vol. 32, No. 8. pp. 2570–2577. DOI: 10.1016/j.msec.2012.07.042.
5. Du H., Wei Z. J., Liu X. W., Zhang E. L. Effects of Zn on the microstructure, mechanical property and bio-corrosion property of Mg – 3 Ca alloys for biomedical application. Materials Chemistry and Physics. 2011. Vol. 125. pp. 568–575. DOI: 10.1016/j.matchemphys.2010.10.015.
6. Sun Y., Zhang B. P., Wang Y., Geng L., Jiao X. H. Preparation and characterization of a new biomedical Mg – Zn – Ca alloy. Materials and Design. 2012. Vol. 34. pp. 58–64. DOI: 10.1016/j.matdes.2011.07.058.
7. Chengwen Y., Du W., Liu K., Fu J. et al. Mechanical properties and corrosion behaviors of Mg – 4 Zn – 0.2 Mn – 0.2 Ca alloy after long term in vitro degradation. Trans. Nonferrous Met. Soc. China. 2020. Vol. 30. P. 363–372. DOI: 10.1016/S1003-6326(20)65218-9.
8. Zhang E., Yang L., Xu J., Chen H. Microstructure, mechanical properties and bio-corrosion properties of Mg – Si (–Ca,Zn) alloy for biomedical application. Acta Biomaterialia. 2010. Vol. 6. pp. 1756–1762. DOI: 10.1016/j.actbio.2009.11.024.
9. Liu S., Chen Y., Han H. Grain refinement of AZ91D magnesium alloy by a new Mg – 50 % Al4C3 master alloy. Journal of Alloys and Compounds. 2015. Vol. 624. pp. 266–269. DOI: 10.1016/J.JALLCOM.2009.12.064.
10. Luo T., Ji H., Jie C., Zhao F. et al. As-cast structure and tensile properties of AZ80 magnesium alloy DC cast with low-voltage pulsed magnetic field. Transactions of Nonferrous Metals Society of China. 2015. Vol. 25, No. 7. pp. 2165–2171. DOI: 10.1016/S1003-6326(15)63828-6.
11. Yao Q., Luo Z., Li Y., Yan F., Duan R. Effect of electromagnetic stirring on the microstructures and mechanical properties of magnesium alloy resistance spot weld. Materials and Design. 2014. Vol. 63. pp. 200–207. DOI: 10.1016/j.matdes.2014.06.004.
12. Lee Y. C., Dahle A. K., Stjohn D. H. The role of solute in grain refinement of magnesium. Metallurgical and Materials Transactions A. 2000. Vol. 31. pp. 2895–2906. DOI: 10.1007/BF02830349.
13. Puga H., Barbosa J., Tuan N. Q., Silva F. Effect of ultrasonic degassing on performance of Al-based components. Transactions of Nonferrous Metals Society of China. 2014. Vol. 24. pp. 3459–3464. DOI: 10.1016/S1003-6326(14)63489-0.
14. Chen Xingrui, Ning Fangkun, Hou Jian, Le Qichi, Tang Yan. Dual-frequency ultrasonic treatment on microstructure and mechanical properties of ZK60 magnesium alloy. Ultrasonics Sonochemistry. 2018. Vol. 40. pp. 433–441. DOI: 10.1016/j.ultsonch.2017.07.027.
15. Fang X., Wu S., Lü S., Wang J., Yang X. Microstructure evolution and mechanical properties of quasicrystal-reinforced Mg – Zn – Y alloy subjected to ultrasonic vibration. Materials Science and Engineering: A. 2016. Vol. 679. pp. 372–378. DOI: 10.1016/j.msea.2016.10.035.
16. Hu Z., Li X., Yan H., Wu X. Q. et al. Effects of ultrasonic vibration on microstructure evolution and elevated-temperature mechanical properties of hot-extruded Mg – 6 Al – 0.8 Zn – 2.0 Sm wrought magnesium alloys. Journal of Alloys and Compounds. 2016. Vol. 685. pp. 58–64. DOI: 10.1016/j.jallcom.2016.05.210.
17. Chen X., Le Q., Wang X., Liao Q., Chu C. Variable-frequency ultrasonic treatment on microstructure and mechanical properties of ZK60 alloy during large diameter semi-continuous casting. Metals. 2017. Vol. 7, No. 5. p. 173. DOI: 10.3390/met7050173.
18. Khosro Aghayani M., Niroumand B. Effects of ultrasonic treatment on microstructure and tensile strength of AZ91 magnesium alloy. Journal of Alloys and Compounds. 2011. Vol. 509, Iss. 1. pp. 114–122. DOI: 10.1016/j.jallcom. 2010.08.139.
19. Abramov O. V. High-intensity ultrasonics: Theory and industrial applications. CRC Press, 2020. 700 p. DOI: 10.1201/9780203751954.
20. Liu Q., Zhai Q., Qi F., Zhang Y. Effects of power ultrasonic treatment on microstructure and mechanical properties of T10 steel. Materials Letters. 2007. Vol. 61. pp. 2422–2425. DOI: 10.1016/j.matlet.2006.09.027.
21. Khrustalyov A. P., Akhmadieva A. A., Monogenov A. N., Zhukov I. A., Marchenko E. S., Vorozhtsov A. B. Study of the effect of diamond nanoparticles on the structure and mechanical properties of the medical Mg – Ca – Zn magnesium alloy. Metals. 2022. Vol. 12, Iss. 2. p. 206. DOI: 10.3390/met12020206.
22. Zhang S., Zhao Y., Cheng X., Chen G., Dai Q. High-energy ultrasonic field effects on the microstructure and mechanical behaviors of A356 alloy. Journal of Alloys and Compounds. 2009. Vol. 470, Iss. 1-2. pp. 168–172. DOI: 10.1016/j.jallcom.2008.02.091.
23. Ramirez A., Qian Ma, Davis B., Wilks T., StJohn D. H. Potency of highintensity ultrasonic treatment for grain refinement of magnesium alloys. Scripta Materialia. 2008. Vol. 59, Iss. 1. pp. 19–22. DOI: 10.1016/j.scriptamat. 2008.02.017.
24. Qian Ma., Ramirez A., Das A. Ultrasonic refinement of magnesium by cavitation: Clarifying the role of wall crystals. Journal of Crystal Growth. 2009. Vol. 311, Iss. 14. pp. 3708–3715. DOI: 10.1016/j.jcrysgro.2009.04.036.
25. Zhang Z., Le Q., Cui J. Influence of high-intensity ultrasonic treatment on the phase morphology of a Mg – 9.0 wt. % Al binary alloy. Rаre metals. 2009. Vol. 28, Iss. 1. pp. 86–90. DOI: 10.1007/s12598-009-0017-3.
26. Zhang J., Zhang Z., Zhang Y., Li S., Liu Y. Effect of Sb on microstructure and mechanical properties in Mg – 10 Zn – 5 Al high zinc magnesium alloys. Transactions of Nonferrous Metals Society of China. 2010. Vol. 20, Iss. 3. pp. 377–382. DOI: 10.1016/s1003-6326(09)60149-7.
27. Emadi P., Ravindran C. The influence of high temperature ultrasonic processing time on the microstructure and mechanical properties AZ91E magnesium alloy. Journal of Materials Engineering and Performance. 2021. Vol. 30, Iss. 2. pp. 1188–1199. DOI: 10.1007/s11665-020-05419-z.
28. Chen Yang, Yin Zheng, Yan Hong, Zhou Guo-Hua et al. Effect of samarium on the microstructure and corrosion resistance of AZ91 magnesium alloy treated by ultrasonic vibration. Materials. 2018. Vol. 11, Iss. 11. 2331. DOI: 10.3390/ma11112331.
29. Chen Yang, Yan Hong, Kaizhi Ji, Ling Lishibao et al. Effect of ultrasonic treatment during solidification on corrosion behavior of Mg – 3 Al – 1 Zn and Mg – 4 Zn magnesium alloys. Journal of the Electrochemical Society. 2020. Vol. 167, Iss. 16. 161505. DOI: 10.1149/1945-7111/abcde5.
30. GOST 804–93. Primary magnesium ingots. Specifications. Introduced: 01.01.1997.
31. GOST 3640–94. Zinc. Specifications. Introduced: 01.01.1997.
32. Zeka B., Markoli B., Mrvar P., Medved J., Petriс M. Suitability of moulding materials for Al-Li alloy casting. Materials and Technologies. 2021. Vol. 55, Iss. 2. pp. 311–316. DOI: 10.17222/mit.2020.208.
33. GOST 24104–2001. Laboratory scales. Introduced: 01.07.2002.
34. Yi-Nan Zhang, Dmytro Kevorkov, Jian Li, Elhachmi Essadiqi, Mamoun Medraj. Determination of the solubility range and crystal structure of the Mg-rich ternary compound in the Ca – Mg – Zn system. Intermetallics. 2010. Vol. 18, Iss. 12. pp. 2404–2411. DOI: 10.1016/j.intermet.2010.08.033.
35. Baoping Zhang, Yunlong Hou, Xiaodan Wang, Yin Wang, Lin Geng. Mechanical properties, degradation performance and cytotoxicity of Mg – Zn – Ca biomedical alloys with different compositions. Materials Science and Engineering: C. 2011. Vol. 31, Iss. 8. pp. 1667–1673. DOI: 10.1016/j.msec.2011.07.015.

Language of full-text russian
Full content Buy
Back