Journals →  Eurasian mining →  2022 →  #2 →  Back

PROCESSING AND COMPLEX USAGE OF MINERAL RAW MATERIALS
ArticleName Ore hardness properties evaluation based on industrial comminution circuits surveys
DOI 10.17580/em.2022.02.13
ArticleAuthor Lvov V. V., Chitalov L. S., Lagov P. B.
ArticleAuthorData

Saint-Petersburg Mining University, Saint-Petersburg, Russia:

Lvov V. V., Associate Professor, Candidate of Engineering Sciences, lvov@dispoglobal.com

 

JSC Cadfem CIS, Moscow, Russia:

Chitalov L. S., Candidate of Engineering Sciences

 

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (IPCE RAS), Moscow, Russia:

Lagov P. B., Doctor of Engineering Sciences

Abstract

The paper addresses determination of ore hardness and grindability parameters using the data obtained from the industrial comminutions circuits survey campaigns. The calculations use the earlier obtained relations between the high-energy impact fracture parameters A and b from JK DWT and SMC tests and the energy efficiency indices used in the Morrell method for the conventional grinding, coarse grinding and high pressure grinding roll milling. Using the simulation modeling of comminution circuits for two types of sulfide copper–nickel ore and one type of apatite–nepheline ore, it is shown that the relative error of the theoretical determination of the JK DWT and SMC testing data is never higher than 16.1%. The calculation method is recommended for application in design and optimization studies of process plants for various genesis minerals, including iron ore.

The study was supported by the state contract for research activity in 2021, Grant No. FSRW-2020-0014.

keywords Energy indices, ore strength properties, drop weight test, JK DWT, SMC test, comminution, crushing, grinding, Morrell
References

1. Aleksandrova T., Nikolaeva N., Afanasova A., Romashev A., Kuznetsov V. Selective disintegration justification based on the mineralogical and technological features of the polymetallic ores. Minerals. 2021. Vol. 11, No. 8. DOI: 10.3390/min11080851

2. Nikolaeva N. V., Aleksandrova T. N., Taranov V. A. Determination of the degree of impact destruction of gold-bearing ore particles in the layer. Information. 2017. Vol. 20, No. 9. pp. 6605–6613.
3. Lagov B. S., Bashlykova T. V., Lagov P. B., Rakaev A. I., Kulakov A. N., Puzyrev V. A. Combined technology for concentration of chromite ores on the base of combination of radiometric and gravitational methods. Gornyi Zhurnal. 2002. No. 9. pp. 39-46
4. Talovina I. V., Lieberwirth H., Alexandrova T. N. et al. Supergene oxide–silicate nickel deposits: Mineral-geochemical composition and peculiarities of processing. Eurasian Mining. 2017. No. 1. pp. 21–24. DOI: 10.17580/em.2017.01.06
5. Nikolaeva N. V., Taranov V. A., Afanasova A. V. Ore strength analysis in planning ore pretreatment circuit. Gornyi Zhurnal. 2015. Vol. 12. pp. 9–13. DOI: 10.17580/gzh.2015.12.02
6. Elnikova. S. P., Gazaleeva G. I. Reduction energy prediction for layertype cone crushers. Obogashchenie Rud. 2019. Vol. 5. pp. 3–9. DOI: 10.17580/or.2019.05.01
7. Razumov K. A., Perov V. A. Design of concentration factories. University textbook. Moscow : Nedra, 1982. 518 p.
8. Ankerman Yu. A. Methods to determine ore grindability to find capacity of industrial tumbling mills. Obogashchenie Rud. 2004. No. 5. pp. 35–41.
9. Bond F. C. Third theory of comminution. Transactions on AIME Mining Engineering. 1952. Vol. 193. pp. 484–494.
10. Bond F. C. Crushing and grinding calculations. Reprinted from British Chemical Engineering. 1961. Parts I and II, with additions and revisions. 1962. April. Allis-Chalmers Publication No. 07R9235D.
11. JKTech Pty Ltd. Comminution testing information. 2021. Available at: https://jktech.com.au/products/testing-equipment (accessed: 31.03.2022).
12. Starkey J., Dobby G., Kosick G. A new tool for sag hardness testing. Presented at the Canadian Mineral Processor’s Conference in Ottawa. 1994. No. 7.
13. Starkey J. Starkey Mini Pilot SAG Mill. Patent Application: 11.06.2020. Announcement: 10.08.2020. Posted to LinkedIn: 12.08.2020.
14. Starkey J., Moussaid H., Boucher D. Keys to Best Practice Comminution Design. Comminution 2021. 2021.
15. SMC Testing Pty Ltd. Using the SMC Test® to Predict Comminution Circuit Performance Available at: https://www.smctesting.com/documents/Using_the_SMC_Test.pdf (accessed: 30.03.2022).
16. Morrell S. Design of AG/SAG mill circuits using the SMC test. Proceedings International Conference Autogenous and Semi Autogenous Grinding Technology. Vancouver : UBC, 2006.
17. GMG—Global Mining Guidelines Group. Determining the Bond Efficiency of Industrial Grinding Circuits. 2016. Available at: https://gmggroup.org/wp-content/uploads/2016/02/Guidelines_Bond-Efficiency-REV-2018.pdf (accessed: 30.03.2022).
18. GMG – Global Mining Guidelines Group. Morrell method for determining comminution circuit specific energy and assessing energy utilization efficiency of existing circuits. 2016. Available at: https://gmggroup.org/wpcontent/uploads/2016/08/Guidelines_-Morrell-REV-2018.pdf (accessed: 30/03/2022).
19. Kulikov Y., Senchenko A. Application of relationships between crushing and grinding parameters in engineering and design. IMPC 2014—27th International Mineral Processing Congress. 2014.
20. Kuskov V. B., Sishchuk Yu. M. Improvement of beneficiation technologies for iron ore of various type and material constitution. Gornyi Zhurnal. 2016. No. 2. pp. 70–74. DOI: 10.17580/gzh.2016.02.14
21. Fadeev A., Komendantova N., Cherepovitsyn A., Tsvetkova A., Paramonov I. Methods and priorities for human resource planning in oil and gas projects in Russia and OPEC. OPEC Energy Review. 2021. Vol. 45, No. 3. pp. 365–389.
22. Fokina S. B., Petrov G. V., Sizyakova E. V., Andreev Yu. V., Kozlovskaya A. E. Process solutions of zinc-containing waste disposal in steel industry. International Journal of Civil Engineering and Technology. 2019. Vol. 10, No.1. pp. 2083–2089.
23. Boduen A. Y., Fokina S. B., Petrov G. V. et al. Ammonia autoclave technology for the processing of low-grade concentrates generated in flotation concentration of cupriferous sandstones. Obogashchenie Rud. 2019. No. 2. pp. 33–38. DOI: 10.17580/or.2019.02.06
24. Kobylyanski A., Zhukova V., Petrov G. et al. Challenges in processing copper ores containing sulfosalts. Scientific and Practical Studies of Raw Material Issues – Proceedings of the Russian–German Raw Materials Dialogue: A Collection of Young Scientists Papers and Discussion. 2019. pp. 120–126. DOI: 10.1201/9781003017226-18
25. Nikolaeva N. V., Aleksandrova T. N., Chanturiya E. L. et al. Mineral and technological features of magnetite-hematite ores and their influence on the choice of processing technology. ACS Omega. 2021. Vol. 6, No. 13. pp. 9077–9085.
26. Talovina I. V., Aleksandrova T. N., Popov O., Lieberwirth H. Comparative analysis of rocks structural-textural characteristics studies by computer X-ray microtomography and quantitative microstructural analysis me thods. Obogashchenie Rud. 2017. No. 3. pp. 56–62. DOI: 10.17580/or.2017.03.09
27. Nikolaeva N., Aleksandrova T., Romashev A. Effect of grinding on the fractional composition of polymineral laminated bituminous shales. Mineral Processing and Extractive Metallurgy Review. 2018. Vol. 39, No. 4. pp. 231–234.
28. Petrov G. V., Shneerson Ya. M., Andreev Yu. V. Platinum metal recovery in chromite ore processing. Journal of Mining Institute. 2018. Vol. 231. pp. 281–286.
29. Aleksandrova T. N., O’Connor C. Processing of platinum group metal ores in Russia and South Africa: current state and prospects. Journal of Mining Institute. 2020. Vol. 244, No. 4. pp. 462–473.
30. Aleksandrova T. N., Albendary A. M. Increasing the efficiency of phosphate ore processing using flotation method. Journal of Mining Institute. 2021. Vol. 248, No. 2. pp. 260–271.
31. Vasilev Y., Cherepovitsyn A., Tsvetkova A. et al. Promoting Public Awareness of Carbon Capture and Storage Technologies in the Russian Federation: A System of Educational Activities. Energies. 2021. No. 14. pp. 1–14.
32. Napier-Munn T. J., Morrell S., Morrison R. D. et al. Mineral Comminution Circuits: Their Operation and Optimisation. Australia : University of Queensland, Julius Kruttschnitt Mineral Research Centre: Indooroopilly, 1996.
33. Bailey C. W., Lane G., Morrell S. et al. What can go wrong in comminution circuit design? Tenth Mill Operators’ Conference, Adelaide SA, 12-14 October. Carlton, VIC : AusIMM, 2009.
34. Burgess D. A method of calculating autogenous/semi-autogenous grinding mill specific energies using a combination of Bond work indices and Julius Kruttschnitt parameters, then applying efficiency factors. Proceedings 11th AusIMM Mill Operators’ Conference. Melbourne : The Australasian Institute of Mining, 2012. pp. 37–44.
35. Vogel L. Peukert W. From single particle impact behaviour t o modelling of impact mills. Chemical Engineering Science. 2005. Vol. 60, No. 18. pp. 5164–5176.
36. Shi F., Kojovic T. Validation of a model for impact breakage incorporating particle size effect. International Journal of Mineral Processing. 2007. Vol. 82, No. 3. pp. 156–163.
37. Tavares L. M., André F. P., Potapov A. et al. Adapting a breakage model to discrete elements using polyhedral particles. Powder Technology. 2020. pp. 208–220. DOI: 10.1016/j.powtec.2019.12.007
38. Lvov V. V., Chitalov L. S. Modern trends in the design of comminution processes and equipment for non-ferrous metals ores. Tsvetnye Metally. 2020. No. 10. pp. 20–26. DOI: 10.17580/tsm.2020.10.03
39. Chitalov L. S., Lvov V. V. Comparative assessment of the Bond ball mill work index tests. GIAB. 2021. No. 1. pp. 130–145.

Full content Ore hardness properties evaluation based on industrial comminution circuits surveys
Back