Journals →  CIS Iron and Steel Review →  2022 →  #2 →  Back

Ecology and Recycling
ArticleName Use of metallurgical scale in the processes of engineering protection of the environment
DOI 10.17580/cisisr.2022.02.15
ArticleAuthor E. N. Kuzin, N. E. Kruchinina
ArticleAuthorData

Mendeleyev University of Chemical Technology of Russia (Moscow, Russia):

E. N. Kuzin, Cand. Eng., Department of Environmental Engineering, e-mail: e.n.kuzin@mail.ru
N. E. Kruchinina, Dr. Eng., Head of Faculty of Biotechnology and Environmental Engineering, Head of Department of Environmental Engineering, e-mail: krutch@muctr.ru

Abstract

The main directions of alternative use of scale, a metal-containing waste material from forging and pressing shops at metallurgical enterprises, were suggested and researched within the framework of this work. Scale composition from the processes of heat treatment and forging of steel components from forging and pressing shops at the machine- building plant in the Moscow region was examined. It was established that up to 99 % of scale is presented by magnetic phases of iron oxides, supposedly in the form of Fe3O4, and alloying components do not practically transit in scale. The technology of sulfuric acid and hydrochloric scale processing with obtain of coagulants is suggested for purification of waste water at galvanic sections or hydrochloric pickling solutions respectively. The technology of scale use as filtrating loading for the processes of purification and neutralization of chromium-containing waste water is proposed. Hugh reducing ability of scale as a reactant for purification of acidic waste water was established in the wide range of initial concentration values of chromium (VI) compounds. Possibility of scale use as Fe-containing additive for pyrometallurgical processing of quartzite-leucoxene, a large-capacity titanium-containing mineral waste, was examined. It was established that chemically active pseudobrookite is the final conversion product; it can be used as raw material for manufacture of wide spectrum of commercial products.

keywords Scale, processing, forging and pressing shop, recycling, pseudobrookite, pickling solution, chromium (VI) reduction
References

1. de Mello Santos V.H., Campos T.L.R., Espuny M. et al. Towards a green industry through cleaner production development. Environmental Science and Pollution Research (ESPR). 2022. vol. 29. pp. 349–370. DOI: 10.1007/s11356-021-16615-2.
2. Boiko N. I., Odaryuk V. A., Safonov A. V. The main directions of waste-free and low-waste technologies. Tekhnologii grazhdanskoy bezopasnosti. 2015. Vol. 12. No. 1 (43). pp. 68-72.
3. Yusfin Y. S. Low-waste technologies in the metallurgical industry. Metallurgist. 2002. No. 46 (3/4). pp. 111–116. DOI: 10.1023/a:1019738827422.
4. Mekhametzhanova D. T., Beisembaev M. K. Wastes of metallurgical enterprises, their processing and recycling. Naula i tekhnika Kazakhstana. 2016. No. 3-4. pp. 122-129.
5. Lis T., Nowacki K., Malysa T. Utilization of Metallurgical Waste in Non-Metallurgical Industry. Solid State Phenomena. 2013. No. 212. pp. 195–200.

6. Boitsov V. V., Trofimov I. D. Hot stamping. Moscow : Vysshaya shkola. 1978. 304 p.
7. GOST 2787-75. Secondary ferrous metals. General technical conditions. Introduced: 01.07.1977.
8. GOST 2787-2019. Interstate standard. Secondary ferrous metals. General technical conditions. Introduced: 01.05.2022.
9. Endemann G. Luengen H. B., Wuppermann C.-D. Forming of dust, scale and slime and their utilization at German metallurgical works. Chernye metally. 2007. No. 2. pp. 49–56.
10. Dobrovolskiy I. P., Starikova N. V., Volkova M. V., Rymarev P. N. Perspective technologies for metallurgical scale processing. Vestnik Chelyabinskogo gosudarstvennogo universiteta. 2007. No. 6. pp. 137-140.
11. Leontyev L., Ponomarev V., Sheshukov O. Processing and utilization of man-caused wastes of metallurgical production. Ekologiya i promyshlennost Rossii. 2016. Vol. 20. No. 3. pp. 24-27. DOI: 10.18412/1816-0395-2016-3-24-27.
12. Gonik I. L., Lemyakin V. P., Novitsky N. A. Features of the use of briquetted iron-bearing wastes. Metallurgist. 2011. Vol. 55. No 5-6. pp. 397-400.
13. Gonik I. L., Novitsky N. A., Soloviev V. A. Usage of oily scale for production of briquetted charge material. Chernye metally. 2013. No. 7. pp. 20-23.
14. Martauz P., Vaclavik V., Cvopa B. The use of steel slag in concrete. IOP Conference Series: Earth and Environmental Science. 2017. No. 92. No. 012041. DOI: 10.1088/1755-1315/92/1/012041.
15. Martauz P., Vaclavik V., Cvopa B. The Properties of Concrete Based on Steel Slag as a By-Product of Metallurgical Production. Key Engineering Materials. 2020. No. 838. pp. 10–22.
16. Vieira C. M. F., Monteiro S. N. Use of Steel Slag into Clayey Ceramics. Materials Science Forum. 2010. No. 660-661. pp. 686–691. DOI: 10.4028/www.scientific.net/msf.660-661.686.
17. Wu Q., Huang Z. Preparation and performance of lightweight porous ceramics using metallurgical steel slag. Ceramics International. 2021. Vol. 47. No. 18. No. 25169–25176. DOI: 10.1016/j.ceramint.2021.04.3.
18. Díaz R. O., Farfán M. R., Cardenas J., Forero J. Use of steel slag as a new material for roads. Journal of Physics: Conference Series. 2017. vol. 935. No. 012006. DOI: 10.1088/1742-6596/935/1/012006.
19. Kuchumov V. A., Shumkin S. S. Analysis of chemical composition of initial alloy in production of permanent magnets from the alloys of Sm-Co system. Nauchno-tekhnicheskie vedomosti SPbGPU. 2017. Vol. 23. No. 1. pp. 219–225.
20. Kuzin E. N., Kruchinina N. E., Fadeev A. B., Nosova T. I. Principles of pyro-hydrometallurgical processing of quartz-leucoxene concentrate with the formation of pseudobrukite phase. Obogashchenie rud. 2021. No 3. pp. 33-38. DOI: 10.17580/or.2021.03.06.
21. I. Y. Motovilov, V. A. Luganov, B. Mishra, T. A. Chepushtanova. Oxide powders production from iron chloride. CIS Iron and Steel Review. 2018. Vol. 15. pp. 28-32. DOI: 10.17580/cisisr.2018.01.06.
22. Lidin R. A., Molochko V. A., Andreeva L. L. Chemical properties of inorganic substances. Moscow : Khimiya. 2000. 480 p.
23. Draginskiy V. L., Alekseeva L. P., Getmantsev S. V. Coagulation in purification technology of natural water. Moscow : Nauch. Izd. 2005. 576 p.
24. Getmantsev S. V., Nechaev I. A., Gandurina L. V. Purification of production waste waters by coagulants and flocculants. Moscow : ASV. 2008. 271 p.
25. Sadykhov G. B., Zablotskaya Y. V., Anisonyan K. G., Kopyev D. Y., Olyunina T. V. Extraction of High-Quality Titanium Raw Materials from Leucoxene Concentrates of the Yarega Deposit. Russian Metallurgy (Metally). 2018 No. 11. pp. 1015–1019. DOI: 10.1134/s0036029518110101
26. Rodriguez M. H., Rosales G. D., Pinna E. G., Tunez F. M., Toro N. Extraction of Titanium from Low-Grade Ore with Different Leaching Agents in Autoclave. Metals. 2020. Vol. 10. No. 4. pp. 497. DOI: 10.3390/met10040497
27. Zanaveskin K. L., Meshalkin V. P. Chlorination of Quartz-Leucoxene Concentrate of Yarega Field. Metallurgical and Materials Transactions. 2020. Vol. 51. pp. 906–915. DOI: 10.1007/s11663-020-01810-2.
28. Zanaveskin K. L., Maslennikov A. N., Makhin M. N. Influence of granulometric composition on leucoxene concentrate processing with titanium tetrachloride obtaining (Yaregskoe deposit). Tsvetnye metally. 2016. No. 10. pp. 31-37. DOI: 10.17580/tsm.2016.10.11.
29. Kuzin E. N., Kruchinina N. E. Titanium-containing coagulants for foundry wastewater treatment. CIS Iron and Steel Review. 2020. Vol. 20. pp. 66–69. DOI: 10.17580/cisisr.2020.02.14.
30. Kuzin E. N., Kruchinina N. E. Production of complex coagulants based on mineral concentrates and their use in water treatment. Obogashchenie rud. 2019. No. 3. pp. 43-48. DOI: 10.17580/or.2019.03.07.
31. Izmailova N. L., Lorentson A. V., Chernoberezhskii Y. N., Composite coagulant based on titanyl sulfate and aluminum sulfate. Russian Journal of Applied Chemistry. 2015. Vol. 88. pp. 458–462. DOI: 10.1134/S1070427215030155.

Full content Use of metallurgical scale in the processes of engineering protection of the environment
Back