Journals →  CIS Iron and Steel Review →  2022 →  #2 →  Back

Metal Forming and Metal Science
ArticleName Regularities of structure and texture development in austenitic steel during cold rolling and heat treatment
DOI 10.17580/cisisr.2022.02.05
ArticleAuthor O. A. Krymskaya, M. G. Isaenkova, V. A. Fesenko, R. A. Minushkin
ArticleAuthorData

National Research Nuclear University MEPhI (Moscow, Russia):

O. A. Krymskaya, Cand. Phys.-Math., Associate Professor, e-mail: XrayTextureLab@gmail.com
M. G. Isaenkova, Dr. Phys.-Math., Prof., e-mail: isamarg@mail.ru
V. A. Fesenko, Lead Engineer
R. A. Minushkin, Engineer, Postgraduate Student

Abstract

The paper studies the regularities of the structure and texture formation in austenitic steel AISI 304 under cold rolling and subsequent heat treatment. Regularities of structure and texture formation depending on the rolling type and deformation degree were established. The ratios of main texture components, the volume fractions and the distortion of the martensite's crystalline lattice were analyzed. It is shown that mechanisms of the austenite martensite phase transformation in the course of cold rolling may change depending on various deformation schemes, as well as mechanisms of the reverse phase transformation variate under subsequent annealing. Herewith depending on the rolling type and deformation degree, the crystallographic texture formation of the nucleating austenite under the heat treatment can have single component or multi-component character and follows different orientation relations. The more scattered martensite texture after deformation results in the formation of fine-dispersed austenite, which hardens the material keeping a sufficient level of plasticity.

The work was carried out with the financial support of the Ministry of Science and Higher Education of Russian Federation (Agreement No. 075-15-2021-1352).

keywords Austenitic steel, cold rolling, martensite, structure, texture, phase transformations
References

1. Guo X., La P., Li H., Wei Y., Lu X, Effect of the Deformation Amount on the Microstructure and Tensile Properties of 304 Stainless Steel with 2 wt% Al Content by Cold Rolling. Steel Research International. 2020. Vol. 91. pp. 2–10. DOI: 10.1002/srin.201900585.
2. Sun G., Du L., Hu J., Zhang B., Misra R. D. K. On the influence of deformation mechanism during cold and warm rolling on annealing behavior of a 304 stainless steel. Materials Science and Engineering A. 2019. Vol. 746. pp. 341–355. DOI: 10.1016/j.msea.2019.01.020.
3. Talonen J., Hänninen H. Formation of shear bands and straininduced martensite during plastic deformation of metastable austenitic stainless steels. Acta Materialia. 2007. Vol. 55. pp. 6108–6118. DOI: 10.1016/j.actamat.2007.07.015.
4. Shen Y. F., Li X. X., Sun X., Wang Y. D., Zuo L. Twinning and martensite in a 304 austenitic stainless steel. Materials Science and Engineering A. 2012. Vol. 552. pp. 514–522. DOI: 10.1016/j.msea.2012.05.080.
5. Mumtaz K., Takahashi S., Echigoya J., Zhang L., Kamada Y., Sato M. Temperature dependence of martensitic transformation in austenitic stainless steel. Journal of Materials Science Letters. 2003. Vol. 22. pp. 423–427. DOI: 10.1023/A:1022999309138.
6. Naghizadeh M., Mirzadeh H. Microstructural Evolutions During Annealing of Plastically Deformed AISI 304 Austenitic Stainless Steel: Martensite Reversion, Grain Refinement, Recrystallization, and Grain Growth. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 2016. Vol. 47. pp. 4210–4216. DOI: 10.1007/s11661-016-3589-1.
7. Isaenkova M., Perlovich Yu., Fesenko V., Dobrokhotov P., Tselishchev A., Changes of structure and crystallographic texture of cladding tubes from austenitic steel under thermal creep testing. IOP Conference Series: Materials Science and Engineering. 2016. Vol. 130. DOI: 10.1088/1757-899X/130/1/012007.
8. Amininejad A., Jamaati R., Hosseinipour S. J. Achieving superior strength and high ductility in AISI 304 austenitic stainless steel via asymmetric cold rolling. Materials Science and Engineering A. 2019. Vol. 767. pp. 138433. DOI: 10.1016/j.msea.2019.138433.
9. Zheng C., Liu C., Ren M., Jiang H., Li L. Microstructure and mechanical behavior of an AISI 304 austenitic stainless steel prepared by cold- or cryogenic-rolling and annealing. Materials Science and Engineering A. 2018. Vol. 724. pp. 260–268. DOI: 10.1016/j.msea.2018.03.105.
10. Ma B., Li C., Wang J., Cai B., Sui F. Influence of asymmetric hot rolling on through-thickness microstructure gradient of Fe–20Mn–4Al–0.3C non-magnetic steel. Materials Science and Engineering A. 2016. Vol. 671. pp. 190-197.
11. Yakovleva A., Isaenkova M., Minushkin R. The effect of combined processing on residual stresses in the surface layer of power plant parts. Materials. 2022. Vol. 15. p. 420. DOI: 10.3390/ma15020420.
12. Isaenkova M., Perlovich Y., Fesenko V. Modern methods of experimental construction of texture complete direct pole figures by using X-ray data. IOP Conference Series: Materials Science and Engineering. 2016. Vol. 130. p. 012055. DOI: 10.1088/1757-899X/130/1/012055.
13. Pawlik K. LaboTex: The Texture Analysis Software. http://www.labosoft.com.pl.
14. Bunge H. J. Texture Analysis in Materials Science. Butterworth, London, UK. 1982. 59 p.
15. EN ISO 14577-1:2015. Metallic materials – Instrumented indentation test for hardness and materials parameters. Part 1-3. 2015.
16. Sakai M. Simultaneous estimate of elastic/plastic parameters in depth-sensing indentation tests. Scripta Materialia. 2004. Vol. 51. pp. 391–395. DOI: 10.1016/j.scriptamat.2004.05.018.
17. Xu G. T., Sun B., Qiao Y. K., Wang G., Zhao M. H. Characterization of the plasticity parameters of the surface-modified layer of 18CrNiMo7-6 alloy steel after carburizing heat treatment through the indentation method. Journal of Materials Research and Technology. 2021. No. 12. pp. 2307-2316. DOI: 10.1016/j.jmrt.2021.04.028.
18. Yardley V. A., Payton E. J. Austenite–martensite/bainite orientation relationship: Characterisation parameters and their application. Materials Science and Technology. 2014. Vol. 30. pp. 1125–1130. DOI: 10.1179/1743284714Y.0000000572.
19. Haghdadi N., Cizek P., Hodgson P. D., He Y., Sun B., Jonas J. J., Rohrer G. S., Beladi H. New insights into the interface characteristics of a duplex stainless steel subjected to accelerated ferrite-to-austenite transformation. Journal of Materials Science. 2020. Vol. 55 (6). pp. 5322-5339. DOI: 10.1007/s10853-020-04358-3.
20. Perlovich Y., Isaenkova M., Fesenko V., Krymskaya O., Dobrokhotov P. Practical applications of the method of generalized pole figures. IOP Conference Series: Materials Science and Engineering. 2015. Vol. 82. p. 012075. DOI: 10.1088/1757-899X/82/1/012075.
21. Perlovich Y., Isaenkova M., Krymskaya O., Dobrokhotov P. Conditions for development of regular structure by deformation of metal materials. AIP Conference Proceedings. 2019. 2113. 040007 (5 p.). DOI: 10.1063/1.5112541.

Full content Regularities of structure and texture development in austenitic steel during cold rolling and heat treatment
Back