Журналы →  Obogashchenie Rud →  2022 →  №6 →  Назад

ENVIRONMENT PROTECTION TECHNOLOGY
Название Specific features of the use of pulverized coal fuel in combined chemical processing
DOI 10.17580/or.2022.06.06
Автор Dubovikov O. A., Beloglazov I. I., Alekseev A. A.
Информация об авторе

Saint Petersburg Mining University (St. Petersburg, Russia):

Dubovikov O. A., Professor, Doctor of Engineering Sciences, Professor, dubovikov_oa@pers.spmi.ru
Beloglazov I. I., Associate Professor, Candidate of Engineering Sciences, Associate Professor, beloglazov_ii@pers.spmi.ru
Alekseev A. A., Student, s212387@stud.spmi.ru

Реферат

Expanding the applications of combined thermochemical processing of mineral raw materials is one of the priority development areas in the non-ferrous metals industry. In particular, combined processes involving reduction roasting and the Waelz process are considered very promising, for example, for additional recovery of non-ferrous and accessory metals from metallurgical cakes. The first chemical stage of these reduction processes is the conversion of carbon fuel into carbon monoxide and carbon dioxide in the presence of oxygen and water vapor. The urgency of a detailed study of this stage is due, among other reasons, to the many problems related to CO2 emissions into the environment. Carbon dioxide emissions into the atmosphere are largely associated with the operation of furnace units that consume a significant amount of carbon-containing utility products. Operation of tubular rotary furnaces involves high temperatures, achieved by burning various types of fuels. This article discusses the process of burning pulverized coal fuel that results in an incomplete burnout of coal particles. Subsequent exposure of the unburned solid phase to the combustion products leads to the formation of a multicomponent heterogeneous system that maintains the synthesis reactions for CO and H2. These reactions, occurring at high temperatures, change the equilibrium composition of the combustion products dramatically. An algorithm is proposed for calculating the equilibrium composition by solving a system of nonlinear equations. The calculation was made by the iterative Newton’s method at a constant temperature, assumed on the basis of the calculated theoretical combustion temperature of the fuel of a given composition.

Ключевые слова Thermochemical pretreatment, tubular furnace, coal, process fuel, combustion temperature, CO2 emission
Библиографический список

1. Naboychenko S. S., Ageev N. G., Doroshkevich A. P., Zhukov V. P., Eliseev E. I., Karelov S. V., Lebed' A. B., Mamyachenkov S. V. Processes and devices of non-ferrous metallurgy. Ekaterinburg: USTU, 2005. 700 p.
2. Klyain S. E., Kozlov P. A., Naboychenko S. S. Extraction of zinc from ore raw materials. Ekaterinburg: USTU-UPI, 2009. 492 p.
3. Vaisberg L. A., Kononov O. V., Ustinov I. D. Fundamentals of geometallurgy. Saint Petersburg: Russian Collection, 2020. 376 p.
4. Brichkin V. N., Kurtenkov R. V., Eldib A. B., Bormotov I. S. State and development options for the raw material
base of aluminum in non-bauxite regions. Obogashchenie Rud. 2019. No. 4. pp. 16–20. DOI: 10.17580/or.2019.04.06.
5. Arsentyev V. A., Gerasimov A. M., Dmitriev S. V., Mezenin A. O., Strakhov V. M. New approach to coal preparation of different metamorphism stage. Koks i Khimiya. 2017. No. 12. pp. 26–30.
6. Russia: CO2 country profile. URL: https://ourworldindata.org/co2/country/russia (accessed: 10.03.2022).
7. Litvinenko V., Bowbrick I., Naumov I., Zaitseva Z. Global guidelines and requirements for professional
competencies of natural resource extraction engineers: Implications for ESG principles and sustainable development goals. Journal of Cleaner Production. 2022. Vol. 338. DOI: 10.1016/j.jclepro.2022.130530.
8. Zhukovskiy Y. L., Batueva D. E., Buldysko A. D., Gil B., Starshaia V. V. Fossil energy in the framework of sustainable development: Analysis of prospects and development of forecast scenarios. Energies. 2021. Vol. 14, Iss. 17. DOI: 10.3390/en14175268.
9. Eremeeva A. M., Kondrasheva N. K., Korshunov G. I. Method to reduce harmful emissions when diesel locomotives operate in coal mines. Topical issues of rational use of natural resources. CRC Press, 2019. pp. 10–16.
10. IPCC special report on carbon dioxide capture and storage. Eds. Metz B., Davidson O., de Coninck H., Loos M., Meyer L. Cambridge University Press, 2005. 443 p.
11. Russia's climate agenda: Responding to international challenges. URL: https://www.csr.ru/ru/news/klimaticheskaya-povestka-rossii-reagiruya-namezhdunarodnye-vyzovy/ (accessed: 10.03.2022).

12. 2050 long-term strategy. URL: https://ec.europa.eu/clima/eu-action/climate-strategies-targets/2050-long-termstrategy_en (accessed: 10.03.2022).
13. Mardashov D., Duryagin V., Islamov S. Technology for improving the efficiency of fractured reservoir development using gel-forming compositions. Energies. 2021. Vol. 14. DOI: 10.3390/en14248254.
14. Morenov V., Leusheva E., Buslaev G., Gudmestad O. T. System of comprehensive energy-efficient utilization of associated petroleum gas with reduced carbon footprint in the field conditions. Energies. 2020. Vol. 13. DOI: 10.3390/en13184921.
15. Kondrasheva N. K., Eremeeva A. M., Nelkenbaum K. S., Baulin O. A., Dubovikov O. A. Development of environmentally friendly diesel fuel. Petroleum Science and Technology. 2019. Vol. 37, No. 12. pp. 1478–1484.
16. Filatova I., Nikolaichuk L., Zakaev D., Ilin I. Publicprivate partnership as a tool of sustainable development in the oil-refining sector: Russian case. Sustainability. 2021. Vol. 13, Iss. 9. DOI: 10.3390/su13095153.
17. Energy technology perspectives. URL: www.iea.org (accessed: 10.03.2022).
18. Kabanov E. I., Korshunov G. I., Kornev A. V., Myakov V. V. Analysis of the causes of methane explosions, flashes and ignitions at coal mines of Russia in 2005–2019. Gorny Informatsionno-analiticheskiy Byulleten'. 2021. No. 2–1. pp. 18–29.
19. World energy outlook. URL: www.iea.org (accessed: 10.03.2022).
20. Kuskov V. B., Bazhin V. Yu. Use of various types of carbon-containing raw materials to produce thermal energy. Zapiski Gornogo Instituta. 2016. Vol. 220. pp. 582–586.
21. Dubovikov O. A., Brichkin V. N. Directions and prospects of using low grade process fuel to produce alumina. Zapiski Gornogo Instituta. 2016. Vol. 220. pp. 587–594.
22. Zhukovskiy Yu., Tsvetkov P., Buldysko A., Malkova Ya., Stoianova A., Koshenkova A. Scenario modeling of sustainable development of energy supply in the Arctic. Resources. 2021. Vol. 10, Iss. 12. DOI: 10.3390/resources10120124.
23. Sysoeva M. O., Galenko Yu. A., Kudryashova O. B., Sypin E. V. Numerical study of methane combustion in a laboratory tube. Polzunovskiy Vestnik. 2018. No. 1. pp. 94–99.
24. Leung D. Y. C., Caramanna G., Maroto-Valer M. M. An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews. 2014. Vol. 39. pp. 426–443.
25. Yaashikaa P. R., Senthil Kumar P., Varjani S. J., Saravanan A. A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products. Journal of CO2 Utilization. 2019. Vol. 33. pp. 131–147.
26. Ghanbari T., Abnisa F., Wan Daud W. M. A. A review on production of metal organic frameworks (MOF) for CO2 adsorption. Science of the Total Environment. 2020. Vol. 707. DOI: 10.1016/j.scitotenv.2019.135090.
27. Bui M., Adjiman C. S., Bardow A., Anthony E. J., Boston A., Brown S., Fennell P. S., Fuss S., Galindo A., Hackett L. A., et al. Carbon capture and storage (CCS): The way forward. Energy & Environmental Science. 2018. Vol. 11. pp. 1062–1176.
28. Zhang Z., Pan S. Y., Li H., Cai J., Olabi A. G., Anthony E. J., Manovic V. Recent advances in carbon dioxide utilization. Renewable and Sustainable Energy Reviews. 2020. Vol. 125. DOI: 10.1016/j.rser.2020.109799.
29. Bykova M. V., Alekseenko A. V., Pashkevich M. A., et al. Thermal desorption treatment of petroleum hydrocarbon-contaminated soils of tundra, taiga, and forest steppe landscapes. Environ Geochem Health. 2021. Vol. 43. pp. 331–2346.
30. Holloway S. Storage capacity and containment issues for carbon dioxide capture and geological storage on the UK continental shelf. Journal of Power and Energy. Part A of the Proceedings of the Institution of Mechanical Engineers. 2009. Vol. 223, Iss. 3. pp. 239–248.
31. Mizkher U. D., Chukalin A. V., Busygin S. V., Kovalnogov V. N., Fedorov R. V. Modeling and research of combustion processes of fuelair mixtures based on biogas. Vestnik Ul'yanovskogo Gosudarstvennogo Tekhnicheskogo Universiteta. 2020. No. 2–3. pp. 35–41.
32. Sharikov Y. V., Sharikov F. Y., Krylov K. A. Mathematical model of optimum control for petroleum coke production in a rotary tube kiln. Theoretical Foundations of Chemical Engineering. 2021. Vol. 55. pp. 711–719.
33. Savchenkov S., Kosov Y., Bazhin V., Krylov K., Kawalla R. Microstructural master alloys features of aluminum–erbium system. Crystals. 2021. Vol. 11. DOI: 10.3390/cryst11111353.
34. Boikov A., Payor V., Savelev R., Kolesnikov A. Synthetic data generation for steel defect detection and classification using deep learning. Symmetry. 2021. Vol. 13, Iss. 7. DOI: 10.3390/sym13071176.
35. Enaleev R. Sh., Telyakov E. Sh., Gasilov V. S., Khairullina L. I. Models of hydrocarbon combustion. Vestnik Kazanskogo Tekhnologicheskogo Universiteta. 2014. Vol. 17, No. 22. pp. 123–129.
36. Krainov A. Yu., Moiseeva K. M., Paleev D. Yu. Numerical simulation of combustion of a polydisperse suspension of coal dust in a spherical volume. Komp'yuternye Issledovaniya i Modelirovanie. 2016. Vol. 8, Iss. 3. pp. 531–539.
37. Perminov V. A., Gudov A. M., Filatov Yu. M., Lee H. U. Mathematical simulation of combustion of gasdispersed mixture of combustible gas and particles. Ugol'. 2017. No. 10. pp. 37–43.
38. Chang R., Thoman Jr., John W. Physical chemistry for the chemical sciences. New York: University Science Books, 2014. pp. 56–61.
39. Bogatyrev A. F., Nizivitina M. A. Temperature dependence of the coefficients of hydrocarbon gas mutual diffusion. Vesti Gazovoy Nauki. 2014. No, 2. pp. 55–58.

Language of full-text русский
Полный текст статьи Получить
Назад