Журналы →  Chernye Metally →  2022 →  №12 →  Назад

Agglomeration
Название Determination of rational parameters of agglomeration of Suroyam deposit`s titanomagnetite ores
DOI 10.17580/chm.2022.12.02
Автор A. S. Kharchenko, S. K. Sibagatullin, V. I. Sysoev, S. V. Oskolkov
Информация об авторе

Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia:

A. S. Kharchenko, Dr. Eng., Associate Professor, Head of the Dept. of Metallurgy and Chemical Technology (MChT), e-mail: as.mgtu@mail.ru
S. K. Sibagatullin, Dr. Eng., Prof., Dept. of MChT
V. I. Sysoev, Postgraduate Student of MChT
S. V. Oskolkov, Senior Lecturer, Dept. of Heat Engineering and Energy Systems

Реферат

Technological parameters for the production of sinter from titanomagnetite ores of the Suroyam deposit in the Chelyabinsk region have been developed. For this, concentrates with a content of up to 63.3 % Fe were obtained from experimental batches of ores, and agglomerates were obtained from them. The studies were carried out in order to increase the reliability and visibility of the results of agglomeration by comparing the Suroyam concentrate with an analogue concentrate that has an industrial implementation. The optimal moisture content of the charge, including the Suroyam deposit`s concentrate, was 8%. At a given charge moisture content, carbon content of 4.5 % and basicity of 1.6, the specific productivity of the sinter plant was 1.089 t/(m2∙h), which is 3.8 % more when sintering the charge with a moisture content of 7.5 % and 29.2 % more when sintering the charge with a moisture content of 8.5 %. With a basicity in the range of 1.6–1.8, a charge moisture content of 8 %, and a carbon content of 4.5 %, the yield of suitable sinter averaged 80.0 %, and the specific productivity was 1.100 t/(m2∙h). The quality indicators of the agglomerate are as follows, %: impact resistance 70.1; destruction 25.3; abrasion 5.1. With a basicity of 1.8, the yield of suitable sinter according to the +5 mm class and the specific productivity were 92.6 % and 1.641 t/(m2∙h), respectively, which is 0.9 and 3.41 % (rel.) higher than the figures obtained when sintering an agglomerate with similar parameters from an analogue concentrate having an industrial implementation.
The article was prepared with the support of the grant of the President of the Russian Federation No. MD-1064.2022.4.

Ключевые слова Suroyam deposit`s ore enrichment concentrate, sinter, titanomagnetites
Библиографический список

1. Leontyev L. I., Morozov А. А., Pogudin D. S., Reznichenko V. А. Titanomagnetites are a reliable raw material base for metallurgy of the future. Chernaya metallurgiya. Byulleten nauchnotechnicheskoy i ekonomicheskoy informatsii. 2009. No. 2 (1310). pp. 5–12.
2. Dmitriev А. N., Vitkina G. Yu., Alektorov R. V. Pyrometallurgical processing of high-titanium ores. Chernaya metallurgiya. Byulleten nauchno-technicheskoy i ekonomicheskoy informatsii. 2020. Vol. 76. No. 12. pp. 1219–1229.
3. Tatarkin А. I., Kozakov Е. М., Shelomentsev А. G., Strovskiy V. Е. On prospects for the development of the raw material base of the Ural ferrous metallurgy. Izvestiya vuzov. Gornyi Zhurnal. 2006. No. 3. pp. 120–127.
4. Potapova М. V., Bigeev V. А., Kharchenko А. S., Potapov М. G., Sokolova Е. V. Study of the technology for processing Suroyam deposit`s titanium-magnetite ores. Izvestiya vuzov. Chernaya metallurgiya. 2020. Vol. 63. No. 3-4. pp. 225–230.
5. Zagaynov S. А., Smirnov L. А., Zazhigaev P. А., Mironov К. V., Forshev А. А. Improvement of the technology for processing vanadium-containing titanomagnetites. Stal. 2020. No. 12. pp. 11–15.
6. Panteleev V. V., Pykhteeva К. B., Polovets М. V., Mironov К. V., Zagainov S. А. Analysis of the effectiveness of possible methods for desulfurization of cast iron in the processing of titanomagnetites. Chernaya metallurgiya. Byulleten nauchno-technicheskoy i ekonomicheskoy informatsii. 2020. Vol. 76. No. 6. pp. 543–549.
7. Zagainov S. А., Tleugabulov B. S., Mikhalev V. А., Kushnarev А. V., Fomichev М. S., Filippov V. V., Mironov К. V., Baranov Е. N. Pulverized coal fuel can be successfully used in blast-furnace smelting of titanomagnetites. Chernaya metallurgiya. Byulleten nauchno-technicheskoy i ekonomicheskoy informatsii. 2014. No. 3 (1371). pp. 42–46.
8. Dmitriev А. N., Vitkina G. Yu., Petukhov R. V., Petrova S. А., Chesnokov Yu. А. Evaluation of indicators of blast-furnace smelting of titanium-magnetite concentrates with different content of titanium dioxide. Chernaya metallurgiya. Byulleten nauchno-technicheskoy i ekonomicheskoy informatsii. 2019. Vol. 75. No. 2. pp. 154–166.
9. Burdyukov А. N., Panteleev А. V. Studies of liquid-phase reduction of South Ural titanomagnetites. Vestnik MGTU imeni G. I. Nosova. 2005. No. 4 (12). pp. 11, 12.
10. Gorbatova Е. А., Pirogov B. I., Kolkova М. S., Sysoev V. I., Iospa А. V. Homogeneity of microaggregates of pseudobrookite-hematite composition, which manifests itself during oxidative roasting of Medvedevka deposit`s titanomagnetite ores. Razvedka i okhrana nedr. 2020. No. 6. pp. 47–52.
11. Grishin I. А., Orekhova N. N., Garkavi М. S., Gorlova О. Е. Features of the Ural low-titanium magnetite ore processing. Gornyi Zhurnal. 2019. No. 11. pp. 37–43.
12. Kornilkov S. V., Dmitriev А. N., Pelevin А. Е. Complex solution for deep processing of titanomagnetite ores. Chernaya metallurgiya. Byulleten nauchno-technicheskoy i ekonomicheskoy informatsii. 2020. Vol. 76. No.1. pp. 12–19.
13. Dmitriev А. N., Petukhov R. V. Preparation for blast-furnace smelting of titanium-magnetite concentrates with different content of titanium dioxide. Chernaya metallurgiya. Byulleten nauchno-technicheskoy i ekonomicheskoy informatsii. 2017. No. 12 (1416). pp. 27–30.
14. Frolov Yu. А., Filatov S. V., Kaplun L. I., Semenov О. А., Mikhaylov V. G., Gileva L. Yu. Influence of the component composition and charge layer height on the quality of the sinter, fuel consumption and performance of PJSC NLMK`s sintering machines. Metallurg. 2020. No. 4. pp. 21–29.
15. Frolov Yu. А., Chukin D. М., Polinov А. А., Emelyanov L. G., Tsygalov М. А., Kotyshev V. Е. Improvement of the operation of charge loading on the PJSC MMK`s sintering machines. Part 1. Stabilization of the charge flow when loading onto sinter machines. Metallurg. 2021. No. 10. pp. 11–18.
16. Gushchin D. N., Senkin К. V., Kharchenko А. S., Sibagatullina М. I., Minikaeva Z. R. Cooling of sinter with different iron content. Teoriya i tekhnologiya metallurgicheskogo proizvodstva. 2014. No.2 (15). pp. 35–37.
17. Frolov Yu. А. State and prospects for the development of sinter production technology. Part 8. Sinter cooling on a sinter conveyor machine. Chernaya metallurgiya. Byulleten nauchnotechnicheskoy i ekonomicheskoy informatsii. 2017. No. 11 (1415). pp. 32–43.
18. Korshikov G. V. About the theory and practice of sinter production. Stal. 2018. No. 1. pp. 12–19.
19. Frolov Yu. А. State and prospects for the development of sinter production technology. Part 2. Mixing and pelletizing of the sinter charge. Chernaya metallurgiya. Byulleten nauchnotechnicheskoy i ekonomicheskoy informatsii. 2017. No. 5 (1409). pp. 40–49.
20. Vitkina G. Yu., Dmitriev А. N., Petukhov R. V., Chesnokov Yu. А. Study of the metallurgical properties of titanomagnetite raw materials. Chernaya metallurgiya. Byulleten nauchnotechnicheskoy i ekonomicheskoy informatsii. 2015. No. 12 (1392). pp. 26–30.
21. Yong-qiang Bai, Shu-sen Cheng, Yan-ming Bai. Analysis of vanadium-bearing / titanomagnetite sintering process by dissection of sintering bed. Journal of Iron and Steel Research International. 2011. Vol. 18, Iss. 6. pp. 8–36.
22. Zhengwei Yu, Guanghui Li, Tao Jiang, Yuanbo Zhang, Feng Zhou, Zhiwei Peng. Effect of basicity on titanomagnetite concentrate sintering. ISIJ International. 2015. Vol. 55, Iss. 4. pp. 907–909.
23. Yang S., Tang W., Xue X. Effect of TiO2 on the sintering behavior of low-grade vanadiferous titanomagnetite ore. Materials. 2021. Vol. 14. p. 4376.
24. Bersenev I. S., Usoltsev D. Yu., Kolyasnikov А. Yu., Petryshev А. Yu., Vinichuk B. G., Grukh А. G., Reztsova L. V. The use of interpolymer binders in the agglomeration of charges based on finely ground iron ore concentrates. Chernaya metallurgiya. Byulleten nauchno-technicheskoy i ekonomicheskoy informatsii. 2017. No. 11 (1415). pp. 43–46.
25. Batuev M. A., Degodya V. Ya., Eremin N. Ya. Agglomerate production method. Patent RF. No. 2069234. Applied: 23.04.1996. Published: 20.11.1996.
26. Sibagatullin S. K., Kharchenko A. S., Gushchin D. N., Sysoev V. I. Aspects of sintering the magnesian iron ore concentrate in blends with magnetite concentrates. Journal of Chemical Technology and Metallurgy. 2021. Vol. 56, Iss. 5. pp. 1089–1101.
27. Sibagatullin S. К., Kharchenko А. S., Sysoev V. I., Polinov А. А. Study of physicochemical properties of high-quality sinter from factory No. 5 of PJSC MMK during reduction in a hydrogen medium. Chernye Metally. 2022. No. 3. pp. 4–9.
28. Sibagatullin S. К., Kharchenko А. S., Kharchenko Е. О., Sibagatullina М. I., Minikaev S. R., Beginyuk V. А. Improvement of the operation of a blast furnace by short-term reduction in natural gas consumption. Chernaya metallurgiya. Byulleten nauchno-technicheskoy i ekonomicheskoy informatsii. 2017. No. 2 (1406). pp. 16–20.
29. Sibagatullin S. K., Kharchenko A. S., Savchenko G. Yu., Beginyuk V. A. Blast furnace performance Improved through optimum radial distribution of materials at the top while changing the charging pattern. CIS Iron and Steel Review. 2018. Vol. 16. pp. 11–14.
30. Sibagatullin S. K., Kharchenko A. S., Chernov V. P., Beginyuk V. A. Improvement of blast-furnace practice due to creation of the conditions for elevation the consumption of natural gas consumption via usage of raw materials with increased strength. Chernye Metally. 2017. No. 8. pp. 27–33.
31. Sibagatullin S. K., Kharchenko A. S., Beginyuk V. A., Selivanov V. N., Chernov V. P. Improvement of blast-furnace operation by increasing the natural gas consumption according to gas dynamics in the heat exchange upper stage. Vestnik MGTU imeni G. I. Nosova. 2017. Vol. 15. No. 1. pp. 37–44.

Language of full-text русский
Полный текст статьи Получить
Назад