Journals →  Tsvetnye Metally →  2022 →  #12 →  Back

COMPOSITES AND MULTIPURPOSE COATINGS
ArticleName Innovative MAB phase-based MoAlB ceramics produced by forced SHS pressing technology
DOI 10.17580/tsm.2022.12.05
ArticleAuthor Bashkirov E. A., Potanin A. Yu., Pogozhev Yu. S., Levashov E. A.
ArticleAuthorData

National University of Science and Technology MISIS, Moscow, Russia:

E. A. Bashkirov, Postgraduate Student at the Department of Powder Metallurgy & Functional Coatings, e-mail: bashkirov.ea@misis.ru
A. Yu. Potanin, Senior Researcher at the SHS Research & Education Centre MISS-ISMAN, Candidate of Technical Sciences
Yu. S. Pogozhev, Associate Professor at the Department of Powder Metallurgy & Functional Coatings, Lead Researcher at the SHS Research & Education Centre MISIS-ISMAN, Candidate of Technical Sciences
E. A. Levashov, Head of the Department of Powder Metallurgy & Functional Coatings, Director of the SHS Research & Education Centre MISISISMAN, Doctor of Technical Sciences, Professor, Member of the Russian Academy of Natural Sciences

Abstract

Compact ceramic materials based on the following MAB phase: MoAlB, were obtained using the forced SHS pressing technology. The authors looked at the effect of excessive aluminium on the combustion parameters of the mixtures in view, as well as on the phase composition and structure of the synthesized samples. It was found that the high residual porosity of the samples is associated with a decreased filtration capacity of the gases released in the combustion wave due to their locking in the reaction mixture briquette by layers of the “chemical oven” located on both sides of the briquette. As a result of SHS pressing technology optimization, ceramic material with a porosity of 9.6% and a 97% concentration of the target phase (i.e. MoAlB) with an orthorhombic base-centered crystal lattice was obtained. The three-dimensional structure has the following lattice parameters: a = 0.3206 nm, b = 1.3929 nm, and c = 0.3097 nm; the unit cell volume is 0.138301 nm3. At the same time, no significant difference can be observed in the lattice spacing of the MAB phase when excessive Al is introduced. The intermediates include a low-temperature tetragonal boride MoB, an intermetallic Mo3Al8 with a monoclinic syngony, as well as an Al2O3 phase identified by scanning electron microscopy and energy dispersive X-ray spectroscopy. Etching of the structure in an acid solution (HNO3 – HF – HCl) revealed that the MoAlB ceramics has a laminated structure with a layer thickness of 100–300 nm. Through nanoindentation, it was found that the MAB phase has a hardness of 11.6 GPa, an elastic modulus of 249.3 GPa, and an elastic recovery of 46%.
This research was funded by the Russian Science Foundation under Project No. 21-79-10103.
The authors would like to thank M. I. Petrzhik, Doctor of Technical Sciences, A. V. Novikov, Candidate of Technical Sciences, and N. V. Shvyndina for their support with specimen studies and discussion.

keywords Self-propagating high-temperature synthesis, forced SHS pressing, MAB phase, MoAlB, ceramics, microstructure, hardness, laminated structure
References

1. Soboyejo W. O., Srivatsan T. S. Advanced structural materials: properties, design optimisation, and applications. New York : CRC Press, 2006. 492 p.
2. Pierson H. O. Handbook of refractory carbides & nitrides: properties, characteristics, processing and apps. Westwood : William Andrew, 1996. 362 p.
3. Gonzalez-Julian J. Processing of MAX phases: from synthesis to applications. Journal of the American Ceramic Society. 2020. Vol. 104, Iss. 2. pp. 659–690.
4. Zhang Z., Duan X., Jia D., Zhou Y. et al. On the formation mechanisms and properties of MAX phases: a review. Journal of the European Ceramic Society. 2021. Vol. 41, Iss. 7. pp. 3851–3878.
5. Barsoum M. W. The MN+1AXN phases: a new class of solids; thermodynamically stable nanolaminates. Progress in Solid State Chemistry. 2000. Vol. 28. pp. 201–281.
6. Lin Z., Zhou Y., Li M., Wang J. In-situ hot pressing/solid-liquid reaction synthesis of bulk Cr2AlC. Zeitschrift fur Metallkunde. 2005. Vol. 96. pp. 291–296.
7. Wang X. H., Zhou Y. C. High-temperature oxidation behavior of Ti2AlC in air. Oxidation of Metals. 2003. Vol. 59. pp. 303–320.
8. Cui B., Jayaseelan D. D., Lee W. E. Microstructural evolution during hightemperature oxidation of Ti2 AlC ceramics. Acta Materialia. 2011. Vol. 59, Iss. 10. pp. 4116–4125.
9. Wang X. H., Zhou Y. C. Oxidation behavior of Ti3AlC2 at 1000–1400 oC in air. Corrosion Science. 2003. Vol. 45, Iss. 5. pp. 891–907.
10. Qian X. K., He X. D., Li Y. B., Sun Y. et al. Cyclic oxidation of Ti3AlCat 1000–1300 oC in air. Corrosion Science. 2011. Vol. 53, Iss. 1. pp. 290–295.
11. Lin Z. J., Li M. S., Wang J. Y., Zhou Y. C. High-temperature oxidation and hot corrosion of Cr2AlC. Acta Materialia. 2007. Vol. 55, Iss. 18. pp. 6182–6191.
12. Dahlqvist M., Tao Q., Zhou J., Palisaitis J. et al. Theoretical prediction and synthesis of a family of atomic laminate metal borides with in-plane chemical ordering. Journal of the American Ceramic Society. 2020. Vol. 142, Iss. 43. pp. 18583–18591.
13. Kota S., Sokol M., Barsoum M. W. A progress report on the MAB phases: atomically laminated, ternary transition metal borides. International Materials Reviews. 2020. Vol. 65, No. 4. pp. 226–255.
14. Wang J., Ye T.-N., Gong Y., Wu J. et al. Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB. Nature Communications. 2019. Vol. 10. p. 2284.
15. Su X., Dong J., Chu L., Sun H. et al. Synthesis, microstructure and properties of MoAlB ceramics prepared by in situ reactive spark plasma sintering. Ceramics International. 2020. Vol. 46, Iss. 10. pp. 15214–15221.
16. Kota S., Zapata-Solvas E., Ly A., Lu J. Synthesis and characterization of an alumina forming nanolaminated boride: MoAlB. Scientific Reports. 2016. Vol. 6. p. 26475.
17. Xu L., Shi O., Liu C. Synthesis, microstructure and properties of MoAlB ceramics. Ceramics International. 2018. Vol. 44, Iss. 11. pp. 13396–13401.
18. Shi O., Xu L., Jiang A ., Xu Q. et al. S ynthesis and o xidation resistance of MoAlB single crystals. Ceramics International. 2019. Vol. 45, Iss. 2. pp. 2446–2450.
19. Levashov E. A., Pogozhev Yu. S., Shtansky D. V., Petrzhik M. I. Selfpropagating high-temperature synthesis of ceramic materials based on the Mn + 1AXn phases in the Ti – Cr – Al – C system. Russian Journal of Non-Ferrous Metals. 2009. Vol. 50, No. 2. pp. 151–160.
20. Levashov E. A., Rogachev A. S., Kurbatkina V. V., Maksimov Yu. M. et al. Innovative materials and the technology of self-propagating high-temperature synthesis: Learner’s guide. Moscow : Izdatelskiy dom “MISIS”, 2011. 377 p.
21. Borovinskaya I., Gromov A., Levashov E., Maksimov Yu. et al. Concise encyclopedia of combustion synthesis: history, theory, technology, and products. Amsterdam : Elsevier, 2017. 466 p.
22. Levashov E. A., Pogozhev Yu. S., Kurbatkina V. V. Advanced ceramic target materials produced by self-propagating high-temperature synthesis for deposition of functional nanostructured coatings. Advances in Ceramics Synthesis and Characterization, Processing and Specific Application. Rijeka : InTech, 2011. pp. 2–48.
23. Potanin A. Yu., Loginov P. A., Levashov E. A., Pogozhev Yu. S. et al. Effect of mechanical activation on Ti3AlC2 max phase formation under self-propagating high-temperature synthesis. Eurasian Chemico-Technological Journal. 2015. Vol. 17. pp. 233–242.
24. Gorshkov V. A., Miloserdov P. A., Sachkova N. V., Luginina M. A. et al. SHS metallurgy of Cr2AlC MAX phase-based cast materials. Russian Journal of Non-Ferrous Metals. 2018. Vol. 59, Iss. 5. pp. 570–575.
25. Gorshkov V. A., Miloserdov P. A., Khomenko N. Y., Miloserdova O. M. High-temperature synthesis of composite materials based on (Cr, Mn, V)–Al–C MAX phases. Ceramics International. 2021. Vol. 47, Iss. 18. pp. 25821–25825.
26. Gorshkov V. A., Miloserdov P. A., Karpov A. V., Shchukin A. S. et al. Investigation of the composition and properties of a Cr2AlC MAX phase-based material prepared by metallothermic SHS. Physics of Metals and Metallography. 2019. Vol. 120, No. 5. pp. 471–475.
27. Bazhin P. M., Stolin A. M. SHS extrusion of materials based on the Ti – Al – C MAX phase. Doklady Chemistry. 2011. Vol. 439. pp. 237–239.
28. Stolin A. M., Bazhin P. M., Averichev O. A., Alymov M. I. et al. Electrode materials based on a Ti–Al–C MAX phase. Inorganic Materials. 2016. Vol. 52, Iss. 10. pp. 998–1001.
29. Pazniak A., Bazhin P., Shchetinin I., Kolesnikov E. et al. Dense Ti3AlCbased materials obtained by SHS-extrusion and compression methods. Ceramics International. 2019. Vol. 45, Iss. 2. pp. 2020–2027.
30. Potanin A. Yu., Bashkirov E. A., Pogozhev Yu. S., Kovalev D. Yu. et al. Self-propagating high-temperature synthesis of MoAlB-base boride ceramics. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsionalnye pokrytiya. 2022. No. 2. pp. 38-51.
31. Kota S., Agne M., Zapata-Solvas E., Dezellus O. et al. Elastic properties, thermal stability, and thermodynamic parameters of MoAlB. Physical Review B. 2017. Vol. 95. p. 144108.
32. Oliver W. C., Pharr G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research. 1992. Vol. 7, Iss. 6. pp. 1564–1583.
33. Wang S., Xu Y., Yu Z., Tan H. et al. Synthesis, microstructure and mechanical properties of a MoAlB ceramic prepared by spark plasma sintering from elemental powders. Ceramics International. 2019. Vol. 45, Iss. 17. pp. 23515–23521.
34. Okada S., Kudou K., Shishido T. Synthesis and some properties of molybdenum diboride MoB2. Pacific Science Review. 2011. Vol. 11. pp. 164–171.
35. Barsoum M., Radovic M. Elastic and mechanical properties of the MAX phases. Annual Review of Materials Research. 2011. Vol. 41, Iss. 1. pp. 195–227.
36. Shtansky D. V., Kiryukhantsev-Korneev Ph. V., Sheveyko A. N., Mavrin B. N. et al. Compa rative investigation of TiAlC(N), TiCAlC(N), and CrAlC(N) coatings deposited by sputtering of МАХ-phase Ti2–хCrхAlC targets. Surface and Coatings Technology. 2009. Vol. 203, Iss. 23. pp. 3595–3609.
37. Zamulaeva E. I., Levashov E. A., Skryleva E. A., Sviridova T. A. et al. Conditions for formation of MAX phase Cr2AlC in electrospark coatings deposited onto titanium alloy. Surface and Coatings Technology. 2016. Vol. 298. pp. 15–23.

Language of full-text russian
Full content Buy
Back