Journals →  Tsvetnye Metally →  2022 →  #11 →  Back

MATERIALS SCIENCE
ArticleName Examining the properties of low-alloy copper-iron alloy made of secondary materials
DOI 10.17580/tsm.2022.11.10
ArticleAuthor Semenov K. G., Batyshev K. A., Deev V. B., Svinoroev Yu. A.
ArticleAuthorData

Bauman Moscow State Technical University, Moscow, Russia:

K. G. Semenov, Associate Professor at the Department of Materials Processing Technologies, Candidate of Technical Sciences, e-mail: semenovkg@bmstu.ru
K. A. Batyshev, Professor at the Department of Materials Processing Technologies, Doctor of Technical Sciences, e-mail: kontbat63@mail.ru

 

National University of Science and Technology MISiS, Moscow, Russia:
V. B. Deev, Professor at the Department of Metal Forming, Principal Researcher at the Ultrafine-Grained Metallic Materials Laboratory, Doctor of Technical Sciences, e-mail: deev.vb@mail.ru

 

Vladimir Dal Lugansk State University, Lugansk, People’s Republic of Lugansk:
Yu. A. Svinoroev, Associate Professor at the Department of Industrial and Art Castings, Candidate of Technical Sciences, e-mail: desna.us@yandex.ru

Abstract

Low-alloy copper alloys fall in the category of wrought alloys. There exists a large group of low-alloy copper alloys that can be easily cast into billets. Low-alloy copper-iron alloys belong to that group. Commercially pure metals should be used as burden materials for primary smelting of low-alloy copperi ron alloy. Reuse of cast alloys involves utilizing foundry returns. This research aimed at developing a process for utilizing secondary materials (returns, scrap, foundry waste) of low-alloy copper alloy containing 2.65% iron. The authors looked at the mechanical properties and processability of low-alloy copper-iron alloy made of secondary burden materials. It was found that bulk deoxidation with phosphorus should be used instead of diffusion deoxidation with carbon to ensure the required melt quality. A comprehensive study of mechanical and performance properties of the alloy was carried out after waste remelting, which also involved doing X-ray spectral analysis. The chemical composition was analyzed with the help of an X-ray fluorescence spectrometer. Microhardness measurements were carried out on a computerized Vickers microhardness tester. Analysis of the iron and phosphorus distribution after heat treatment revealed dispersed iron inclusions. This explains the growth of microhardness in areas where solid inclusions precipitated. Analysis showed that the alloy made of secondary burden materials has high strength and conductivity, especially after heat treatment. This study confirmed better overall properties of remelted copper alloys containing 2.65% iron.

keywords Low-alloy alloys, copper, mechanical properties, conductivity, heat treatment, quenching and ageing, microstructure, electron microscopy, X-ray spectral analysis, burden materials
References

1. Semenov K. G., Batyshev K. A., Chernov V. V., Pankratov S. N. Developing compositions of low-alloy copper alloys for machine building applications. Sovremennye materialy, tekhnika i tekhnologii. 2017. No. 1. pp. 190–195.
2. Semenov K. G., Batyshev K. A., Pankratov S. N. Low-alloy copper alloys for innovative machine building technology: Monograph. Kursk : Universitetskaya kniga, 2018. 153 p.
3. Abbas S. F., Seo S.-J., Kim B.-S., Kim T.-S. Effect of grain size on the electrical conductivity of copper – iron alloys. Journal of Alloys and Compounds. 2017. Vol. 720. pp. 8–16.
4. Chursin V. M. Rational use of waste copper contaminated with iron at metallurgical sites. Izvestiya vuzov. Tsvetnaya metallurgiya. 2000. No. 2. pp. 37–40.
5. Osintsev O. E., Fedorov V. N. Copper and copper alloys. Domestic and international grades : Reference book. Moscow : Mashinostroenie, 2004. 336 p.
6. Vatrushin L. S., Osintsev V. G., Kozyrev A. S. Oxygen-free copper. Moscow : Metallurgiya, 1982. 192 p.
7. Nikolaev A. K., Kostin S. A. Copper and heat-resistant copper alloys. Encyclopedia and dictionary of terms. Basic handbook. Moscow : DPK Press, 2012. 715 p.
8. Berent V. Ya. Materials and properties of electrical contacts in railway devices. Moscow : Intekst, 2005. 408 p.
9. Batyshev K. A., Semenov K. G., Svinoroev Yu. A. Modern casting processes for making castings of non-ferrous metals alloys. Moscow : Pervyi tom, 2020. 150 p.
10. ASTM B465-20. Standard specification for copper-iron alloy plate, sheet, strip, and rolled bar. Introduced: 01.10.2020.
11. DIN 17666–1983. Low alloy wrought copper alloys – Composition. Published: 01.12.1983.
12. Pikunov M. V. Melting of metals. Crystallization of alloys. Solidification of castings : A guide for university students. Moscow : MISiS, 1997. 376 p.
13. Chenab K., Zhanga J., Chenc Y., Chend X., Wanga Z., Sandström R. Slow strain rate tensile tests on notched specimens of as-cast pure Cu and Cu – Fe – Co alloys. Journal of Alloys and Compounds. 2020. Vol. 822. 153647.
14. Oelsen W. Die desoxydation von kupferschmelzen mit eisen, mit phosphor und mit schwefel . Giesserei. 1982. Iss. 6/5. pp. 383, 384.
15. Elanskiy G. N., Elanskiy D. G. Structure and properties of molten metals. Moscow : MGVMI, 2006. 228 p.
16. Elanskiy G. N., Kudrin V. A. Structure and properties of liquid metal. Melting process – quality of steel. Moscow : Metallurgiya, 1984. 238 p.
17. Nikitin V. I., Popel P. S. et al. Structure and properties of master alloy in solid and liquid states. Physical properties of metals and alloys : Research papers. Sverdlovsk : UPI, 1983. pp. 96–102.
18. Nikitin V. I. Heredity in cast alloys: A learner’s guide. Samara : Samarskiy gosudarstvennyi tekhnicheskiy universitet, 2015. 170 p.
19. Chursin V. M. Prospective synthesis of low-alloy copper alloys. Tsvetnye Metally. 2004. No. 5. pp. 71–77.
20. Chursin V. M. Advanced low-alloy copper alloys. Tekhnologiya metallov. 2004. No. 5. pp. 18–22.
21. Chursin V. M. Advanced low-alloy copper alloys. Tekhnologiya metallov. 2004. No. 6. pp. 17–21.
22. Chursin V. M., Gofenshefer L. I. Scale-resistant low-alloy copper alloys: Compositions and properties. Izvestiya vuzov. Tsvetnaya metallurgiya. 2001. No. 1. pp. 14–17.
23. GOST 4515–93. Copper phosphorous alloys. Specifications. Introduced: 01.01.1997.
24. GOST R ISO 6507-1–2007. Metals and alloys. Vickers hardness test. Part 1. Test method. Introduced: 01.08.2008.
25. Yagodkin Yu. D., Dobatkin S. V. Use of electron microscopy and X-ray structural analysis to size up the structural elements of nanocrystalline materials. Zavodskaya laboratoriya. Diagnostika materialov. 2007. Vol. 73, No. 1. pp. 38–49.
26. Abbas S. F., Kim T.-S. Effect of lattice strain on the electrical conductivity of rapidly solidified copper-iron metastable alloys. Journal of Alloys and Compounds. 2018. Vol. 732. pp. 129–135.
27. Nikolaev A. K. Precipitation hardening as a promising area in the synthesis of structural alloys. RITM. 2011. No. 3. pp. 31–35.
28. Semenov K. G., Batyshev K. A., Pankratov S. N., Chernov V. V. Low-alloy copper-iron alloys: Production features. Elektrometallurgiya. 2020. No. 7. pp. 3–8.
29. Semenov K. G. Smelting of low-alloy copper alloys: Metallurgical features. Liteyshchik Rossii. 2019. No. 6. pp. 19–22.

Language of full-text russian
Full content Buy
Back