Journals →  Tsvetnye Metally →  2022 →  #8 →  Back

RARE METALS, SEMICONDUCTORS
ArticleName Ion exchange recovery of rhodium from strong ammonium chloride solutions
DOI 10.17580/tsm.2022.08.03
ArticleAuthor Egorov S. A., Turtseva I. A., Blokhin A. A., Mikhaylenko M. A.
ArticleAuthorData

Saint Petersburg State Institute of Technology, Saint Petersburg, Russia

S. A. Egorov, Assistant Lecturer at the Department of Rare Elements and Nanomaterials Made on Their Basis, e-mail: egorovserg-92@yandex.ru
I. A. Turtseva, Undergraduate Student at the Department of Rare Elements and Nanomaterials Made on Their Basis, e-mail: iramegablok@mail.ru
A. A. Blokhin, Head of the Department of Rare Elements and Nanomaterials Made on Their Basis, Doctor of Technical Sciences, Professor, e-mail: blokhin@list.ru

 

Purolite, An Ecolab Company, Moscow, Russia:
M. A. Mikhaylenko, Technical Director / Hydrometallurgy (CIS), Candidate of Chemical Sciences, e-mail: ixresin@gmail.com

Abstract

The authors looked at the sorption of rhodium using Puromet MTS9840, Puromet MTS9841 and Puromet MTS9850 weakly basic anion exchange resins with polyamine groups and Puromet MTS9140 ion exchange resin with thiourea groups, and they found that, when HCl is partially replaced with NH4Cl as the source of chloride ions and if the overall concentration of chloride ions remains the same (i.e. 4 mol/l), the rhodium distribution coefficients tend to drop in direct proportion to the rising share of NH4Cl in the solution. When using a mixture of 1 mol/l HCl and 3 mol/l NH4Cl, the rhodium capacities of all tested ion exchange resins are 2.5 to 6 times lower than the capacities reached when using 4 mol/l HCl solutions, with the steady-state concentrations of rhodium being equal. The sorption isotherms for the NH4Cl containing solution remain arc-shaped. At the same time, the presence of NH4Cl is associated with only a slight decrease in the rhodium sorption rates when using polyamine resins, which is demon strated in the case of the MTS9840 resin. In terms of selectivity and rhodium capacity when using chloride solutions both with and without ammonium chloride, the tested ion exchange resins can be arranged as follows: MTS9841 > MTS9840 > MTS9140 > MTS9850. It was found that when rhodium is absorbed in dynamic conditions from the following solution, g/l: Rh(III) 0,2; NH4Cl 133,7 (2.5 mol/l); HCl 54,7 (1.5 mol/l); Fe(III) 5,0; Al(III) 4,2; Zn(II) 4,0; Sn(IV) 6,0, the use of the MTS9841 anion exchange resin results in a higher recovery of rhodium (up to 98%), while the residual concentration of rhodium in the solution drops 4 times (down to 0.005 g/l) as compared with the use of the MTS9840 anion exchange resin. It is shown that the process of rhodium desorption from saturated MTS9841 anion exchange resin with a acidified thiourea solution has a minimum rate of 95%.

This research was funded by the Russian Science Foundation; Project No. 21-79-30029.

keywords Rhodium, chloride solutions, ammonium chloride, recovery, ion exchange resins, sorption, desorption
References

1. Live PGM Prices. Metals daily. Precious metals news, information and live prices. Available at: https://www.metalsdaily.com/live-prices/pgms/ (Accessed: 15.07.2022).
2. Xolo L., Moleko-Boyce P., Makelane H., Faleni N., Tshentu Z. R. Status of recovery of strategic metals from spent secondary products. Minerals. 2021. Vol. 11, Iss. 7. N. 673.
3. Granados-Fernandez R., Montiel M. A., Diaz-Abad S., Rodrigo M. A., Lobato J. Platinum Recovery Techniques for a Circular Economy. Catalysts. 2021. Vol. 11, Iss. 8. N. 937.
4. Kotlyar Yu. A., Meretukov M. A., Strizhko L. S. Metallurgy of precious metals: Textbook in 2 books. Book 2. Moscow : “Ore and Metals” Publishing House, 2005. 391 p.
5. ITS 14–2020. Production of precious metals: A reference book of best available techniques. Federal Agency for Technical Regulation and Metrology. Moscow : Byuro NDT, 2020. 153 p.
6. Yanin E. P. Platinum group metals in the environment: Ecological and geochemical aspects. Moscow : NP “ARSO”, 2021. 232 p.
7. Yousif A. M. Recovery and then individual separation of platinum, palladium, and rhodium from spent car catalytic converters using hydrometallurgical technique followed by successive precipitation methods. Journal of Chemistry. 2019. Vol. 2019. DOI: 10.1155/2019/231815.
8. Matsumoto K., Yamakawa S., Sezaki Y. Preferential precipitation and selective separation of Rh(III) from Pd(II) and Pt(IV) using 4-alkylanilines as precipitants. ACS Omega. 2019. Vol. 4, Iss. 1. pp. 1868–1873.
9. Matsumoto K., Hata Y., Sezaki Y., Katagiri H., Jikei M. Highly selective Rh(III) recovery from HCl solutions using aromatic primary diamines via formation of three-dimensional ionic crystals. ACS Omega. 2019. Vol. 4, Iss. 11. pp. 14613–14620.
10. Xing W. D., Sohn S. H., Lee M. S. A review on the recovery of noble metals from anode Slimes. Mineral Processing and Extractive Metallurgy Review. 2020. Vol. 41, Iss. 2. pp. 130–143.
11. Nguyen T. H., Kumar B. N., Lee M. S. Selective recovery of Fe(III), Pd(II), Pt(IV), Rh(III) and Ce(III) from simulated leach liquors of spent automobile catalyst by solvent extraction and cementation. Journal of Chemical Engineering. 2016. Vol. 33, Iss. 9. pp. 2684–2690.
12. Morcali M. H., Zeytuncu B., Yucel O. Rhodium cementation from spent plating solution using Taguchi’s method. Canadian Metallurgical Quarterly. 2013. Vol. 52, Iss. 4. pp. 488–491.
13. Igumnov M. S., Drobot D. V., Chernyshov V. I. New milestones in applied electrochemistry of rare and precious metals. Rossiyskiy khimicheskiy zhurnal. 2001. Vol. 45. pp. 64–71.
14. Arinova A. B., Dmitrienko V. P. The process of electrochemical recovery of rhodium. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta. 2019. No. 4. pp. 47–54.
15. Yu B. C., Kim S. K., Sohn J. S., Kim B. S., Rhee K. I. et al. Electrochemical behaviour and electrowinning of rhodium in acidic chloride solution. Journal of Applied Electrochemistry. 2014. Vol. 44, Iss. 6. pp. 741– 745.
16. Trinh H. B., Lee J. C., Suh Y. J., Lee J. A review on the recycling processes of spent auto-catalysts: Towards the development of sustainable metallurgy. Waste Management. 2020. Vol. 114. pp. 148–165.
17. Padamata S. K., Yasinskiy A. S., Polyakov P. V., Pavlov E. A., Varyukhin D. Yu. Recovery of noble metals from spent catalysts: A Review. Metallurgical and Materials Transactions B. 2020. Vol. 51, Iss. 5. pp. 2413–2435.
18. Nicol G., Goosey E., Yildiz D. S., Loving E., Nguyen V. T. et al. Platinum group metals recovery using secondary raw materials (platirus): Project overview with a focus on processing spent autocatalyst. Johnson Matthey Technology Review. 2021. Vol. 65, Iss. 1. pp. 127–147.
19. Le M. N., Lee M. S., Senanayake G. A short review of the separation of iridium and rhodium from hydrochloric acid solutions by solvent extraction. Journal of Solution Chemistry. 2018. Vol. 47, Iss. 8. pp. 1373–1394.
20. Ding Y., Zhang S., Liu B., Zheng H., Chang C. et al. Recovery of precious metals from electronic waste and spent catalysts: A review. Resources, Conservation & Recycling. 2019. Vol. 141. pp. 284–298.
21. Lee J., Kurniawan, Hong H.-J., Chung K. W., Kim S. Separation of platinum, palladium and rhodium from aqueous solutions using ion exchange resin: a review. Separation and Purification Technology. 2020. Vol. 246. N. 116896.
22. Goc K., Kluczka J., Benke G., Malarz J., Pianowska K. et al. Application of ion exchange for recovery of noble metals. Minerals. 2021. Vol. 11. N. 1188.
23. Blokhin A. A., Voronina S. N., Murashkin Yu. V., Mikhaylenko M. A., Medvedskiy N. L. Recovery of rhodium from multicomponent hydrochloric acid solutions by sorption. Khimicheskaya tekhnologiya. 2012. Vol. 13, No. 9. pp. 543–547.
24. Drogobuzhskaya S. V., Shirokaya A. A., Soloviev S. A. Recovery of platinum group metals from acidic chloride-sulphate and sulphate solutions by sorption using FIBAN fibers. Izvestiya vysshikh uchebnykh zavedeniy. Seriya: Khimiya i khimicheskaya tekhnologiya. 2019. Vol. 62, No. 11. pp. 117–125.
25. Tatarnikov A. V., Sokolskaya I., Shneerson Ya. M., Lapin A. Yu., Goncharov P. M. Treatment of platinum flotation products. Platinum Metals Review. 2004. Vol. 48, Iss. 3. pp. 125–132.
26. Egorov S. A., Blokhin A. A., Murashkin Yu. V., Tatarnikov A. V. Extraction of rhodium from multicomponent chloride solutions by sorption. Tsvetnye Metally. 2020. No. 3. pp. 74–78. DOI: 10.17580/tsm.2020.03.11.
27. Warshawsky A., Fieberg M. B., Mihalik P., Murphy T. G. The separation of platinum group metals (PGM) in chloride media by isothioronium resins. Separation and Purification Methods. 1980. Vol. 9, Iss. 2. pp. 209–265.
28. Egorov S. A., Blokhin A. A., Murashkin Yu. V. Recovery of rhodium(III) from chloride solutions by sorption using ion exchange resin with thiourea functional groups. Zhurnal prikladnoy khimii. 2020. Vol. 93, No. 9. pp. 1311–1316.
29. Marchenko Z., Baltsezhak M. Methods of spectrophotometry in UV and visible regions in inorganic analysis. Moscow : Binom. Laboratoriya znaniy, 2009. 711 p.
30. Gelferig F. Ion exchange resins. Fundamentals of ion exchange. Moscow : Inostrannaya literatura, 1962. 492 p.
31. Buslaeva T. M., Simanova S. A. The state of platinum group metals in solutions. Analytical chemistry of platinum group metals. Ed. by Yu. A. Zolotov, G. M. Varshal, V. M. Ivanov. Moscow : URSS, 2003. pp. 16–88.
32. Buslaeva T. M., Umreyko D. S., Novitskiy G. G., Sinitsyn N. M., Kovrikov A. B. Chemistry and spectroscopy of halogenides of platinum group metals. Minsk : Universitetskoye, 1990. 278 p.

Language of full-text russian
Full content Buy
Back