Journals →  Tsvetnye Metally →  2022 →  #7 →  Back

LIGHT METALS, CARBON MATERIALS
ArticleName Quality assessment of needle coke used in the production of graphite electrodes for metallurgical furnaces
DOI 10.17580/tsm.2022.07.05
ArticleAuthor Gabdulkhakov R. R., Rudko V. A., Efimov I. I., Spektoruk A. A.
ArticleAuthorData

Saint Petersburg Mining University, Saint Petersburg, Russia:

R. R. Gabdulkhakov, Research Fellow at the Scientific Center “Issues of Processing Mineral and Technogenic Resources”, e-mail: renat18061995@gmail.com
V. A. Rudko, Executive Director at the Scientific Center “Issues of Processing Mineral and Technogenic Resources”, Candidate of Technical Sciences, e-mail: rva1993@mail.ru
I. I. Efimov, Graduate Student and Researcher at the Scientific Center “Issues of Processing Mineral and Technogenic Resources”, e-mail: efimov.ignaty@gmail.com


El 6 LLC, Moscow, Russia1 ; EPM-Novosibirsk Electrode Plant JSC, Novosibirsk Region, Russia2:

A. A. Spektoruk, First Deputy General Director1, Managing Director2, e-mail: oborodenko@energoprom.ru

Abstract

Needle coke is a special kind of carbon material that has a developed anisotropic fibrous structure, high current conductivity in the fiber direction and low coefficient of linear thermal expansion. This material has found a wide application in steel industry where it is used for the production of graphite electrodes of the SHP (50–75 kA) and UHP (up to 100 kA) grades designed for high-power electric arc furnaces. This paper describes the results of assessing the quality of the needle coke that is commercially used at El 6 for the production of carbon and graphite products. The quality of the material was analyzed based on two groups of techniques: spectral analysis (SEM and optical microscopy, XRD, Raman spectroscopy) and analysis of physical and chemical properties (CTE, real density, sulfur, ash, moisture, electrical resistivity). A study and a comparative analysis were carried out using seven samples of calcined petroleum and pitch needle cokes. Six of them are used commercially (imported) and one was produced in laboratory conditions from Russian raw materials. The study confirmed that a better needle coke structure tends to form from petroleum coke versus pitch coke. Using the results of spectral analysis, the studied samples of needle cokes were classified into three groups based on their morphology and structure, which correlates with the results of the analysis that looked at their physical and chemical properties. The combination of research and data processing techniques presented in the paper ensures a comprehensive analysis of the studied needle coke and suggests that the material in view can be used in the production of graphite electrodes.
The authors would like to thank Evgeny S. Gorlanov, deputy director of the Research Center for the Problems of Processing Mineral and Man-Made Resources at Saint Petersburg Mining University, and Andrey L. Kvanin, who oversees research and engineering projects at El 6, for their valuable advice and assistance in preparing this paper.
This research was carried out as part of the State Assignment 0792-2020-0010 by the Ministry of Education and Science of the Russian Federation: Elaborating the innovative technologies of processing heavy hydrocarbons into environmentally friendly motor fuels and new carbon materials with controllable macro- and microstructures of the mesophase”.

keywords Needle coke, petroleum coke, pitch coke, electrodes, microstructure, XRD, Raman spectroscopy, SEM, optical microscopy, delayed coking
References

1. Litvinenko V., Bowbriсk I., Naumov I., Zaitseva Z. Global guidelines and requirements for professional competencies of natural resource extraction engineers: Implications for ESG principles and sustainable development goals. Journal of Cleaner Production. 2022. Vol. 338. 130530. DOI: 10.1016/j.jclepro.2022.130530.
2. Litvinenko V. S., Tsvetkov P. S., Dvoynikov M. V., Buslaev G. V. Barriers for the implementation of hydrogen initiatives in the context of sustainable development of the global energy sector. Journal of Mining Institute. 2020. Vol. 244. pp. 421–431. DOI: 10.31897/pmi.2020.4.421.
3. Lebedev A. B., Utkov V. A., Khalifa A. A. Sintered sorbent utilization for H2S removal from industrial flue gas in the process of smelter slag granulation. Journal of Mining Institute. 2019. Vol. 237. pp. 292–297. DOI: 10.31897/pmi.2019.3.292.
4. Litvinenko V. S. Digital economy as a factor in the technological development of the mineral sector. Natural Resources Research. 2020. Vol. 29, Iss. 3. pp. 1521–1541. DOI: 10.1007/s11053-019-09568-4.
5. Kapustin V. M., Glagoleva V. F. Physicochemical aspects of petroleum coke formation (review). Petroleum Chemistry. 2016. Vol. 56. pp. 1–9. DOI: 10.1134/S0965544116010035.
6. Zaporin V. P., Valyavin G. G., Rizvanov I. V, Akhmetov A. F. Decant-oil coking gasoils for production of industrial carbon. Chemistry and Technology of Fuels and Oils. 2007. Vol. 43. pp. 326–329.
7. Feshchenko R. Y., Feschenko E. A., Eremin R. N., Erokhina O. O., Dydin V. M. Analysis of the anode paste charge composition. Metallurgist. 2020. Vol. 64. pp. 615–622. DOI: 10.1007/s11015-020-01037-1.

8. Feshchenko R. Y., Eremin R. N., Erokhina O. O., Povarov V. G. Improvement of oxidation resistance of graphite blocks for the electrolytic production of magnesium by impregnation with phosphate solutions. Part 2. Tsvetnye Metally. 2022. No. 1. pp. 24–29. DOI: 10.17580/tsm.2022.01.02.
9. Ren W., Zhang Z., Wang Y., Kan G. et al. Preparation of porous carbon microspheres anode materials from fine needle coke powders for lithiumion batteries. RSC Advances. 2015. Vol. 5. pp. 11115–11123. DOI: 10.1039/C4RA15321A.
10. Chen G., Jin Y., Zhang Z., Zhao W. et al. A green phenolic resin/needle coke scrap – based carbon/carbon composite as anode material for lithiumion batteries. Ionics. 2021. Vol. 27. pp. 5079–5087. DOI: 10.1007/s11581-021-04278-5.
11. Cheng J., Lu Z., Zhao X., Chen X., Liu Y. Green needle coke-derived porous carbon for high-performance symmetric supercapacitor. Journal of Power Sources. 2021. Vol. 494. 229770. DOI: 10.1016/j.jpowsour.2021.229770.
12. Cheng J., Lu Z., Zhao X., Chen X. et al. Electrochemical performance of porous carbons derived from needle coke with different textures for supercapacitor electrode materials. Carbon Letters. 2021. Vol. 31. pp. 57–65. DOI: 10.1007/s42823-020-00149-7.
13. Li X., Zhao L., He T., Zhang M. et al. Highly conductive, hierarchical porous ultra-fine carbon fibers derived from polyacrylonitrile/polymethylmethacrylate/needle coke as binder-free electrodes for high-performance supercapacitors. Journal of Power Sources. 2022. Vol. 521. 230943. DOI: 10.1016/j.jpowsour.2021.230943.
14. Bazhin V. Y. Structural modification of petroleum needle coke by adding lithium on calcining. Coke and Chemistry. 2015. Vol. 58. pp. 138–142. DOI: 10.3103/S1068364X15040043.
15. Zhang Z., Chen K., Liu D., Lou B. et al. Comparative study of the carbonization process and structural evolution during needle coke preparation from petroleum and coal feedstock. Journal of Analytical and Applied Pyrolysis. 2021. Vol. 156. 105097. DOI: 10.1016/j.jaap.2021.105097.
16. Glazev M. V., Bazhin V. Y. Refractory materials of metallurgical furnaces with the addition of silicon production waste. Non-ferrous Metals. 2022. No. 1. pp. 45–58. DOI: 10.17580/nfm.2022.01.05.
17. Polyakov A. A., Gorlanov E. S., Mushihin E. A. Analytical modeling of current and potential distribution over carbon and low-consumable anodes during aluminum reduction process. Journal of the Electrochemical Society. 2022. Vol. 169. 053502. DOI: 10.1149/1945-7111/ac6a16.
18. Savchenkov S., Kosov Y., Bazhin V., Krylov K. et al. Microstructural master alloys features of aluminum – erbium system. Crystals. 2021. Vol. 11. 1353. DOI: 10.3390/cryst11111353.
19. Gorlanov E. S., Kawalla R., Polyakov A. A. Electrolytic production of aluminium. Review. Part 2. Development prospects. Tsvetnye Metally. 2020. No. 10. P. 42–49. DOI: 10.17580/tsm.2020.10.06.
20. Data analysis. Federal Customs Service. Available at: http://stat.customs.gov.ru/analysis.
21. Fryazinov V. V., Ezhov B. M., Goryunov V. S., Gimaev R. N. et al. Production of needle coke. Chemistry and Technology of Fuels and Oils. 1980. Vol. 16. pp. 163–165. DOI: 10.1007/BF00729209.
22. Alifirova E. Gazpromneft Omsk to build graphite electrode plant. Neftegaz.ru. Available at: https://neftegaz.ru/news/neftechim/678370-gazpromneft-v-g-omsk-postroit-zavod-grafitirovannykh-elektrodov/.
23. Dolomatov M. Y., Burangulov D. Z., Dolomatova M. M., Osipenko D. F. et al. Low-sulphur vacuum gasoil of Western Siberia oil: the impact of its structural and chemical features on the properties of the produced needle coke. Journal of Carbon Research. 2022. Vol. 8, Iss. 19. DOI: 10.3390/c8010019.
24. Sawarkar A. N., Pandit A. B., Samant S. D., Joshi J. B. Petroleum residue upgrading via delayed coking: a review. Canadian Journal of Chemical Engineering. 2007. Vol. 85. pp. 1–24. DOI: 10.1002/cjce.5450850101.
25. Mondal S., Yadav A., Pandey V., Sugumaran V. et al. Dissecting the cohesiveness among aromatics, saturates and structural features of aromatics towards needle coke generation in DCU from clarified oil by analytical techniques. Fuel. 2021. Vol. 304. 121459. DOI: 10.1016/j.fuel.2021.121459.
26. Liu J., Shi X., Cui L., Fan X. et al. Effect of raw material composition on the structure of needle coke. Journal of Fuel Chemistry and Technology. 2021. Vol. 49. pp. 546–553. DOI: 10.1016/S1872-5813(21)60026-9.
27. Zhu H., Zhu Y., Xu Y., Hu C. et al. Transformation of microstructure of coal-based and petroleum-based needle coke: Effects of calcination temperature. Asia-Pacific Journal of Chemical Engineering. 2021. Vol. 16. DOI: 10.1002/apj.2674.
28. Sharikov Y. V., Sharikov F. Y., Krylov K. A. Mathematical model of optimum control for petroleum coke production in a rotary tube kiln. Theoretical Foundations of Chemical Engineering. 2021. Vol. 55, Iss. 4. pp. 711–719. DOI: 10.1134/S0040579521030192.
29. Ismagilov Z. R., Sozinov S. A., Popova A. N., Zaporin V. P. Structural analysis of needle coke. Coke and Chemistry. 2019. Vol. 62. pp. 135–142. DOI: 10.3103/S1068364X19040021.
30. Zhu Y., Liu H., Xu Y., Hu C. et al. Preparation and characterization of coal-pitch-based needle coke (Part III): The effects of quinoline insoluble in coal tar pitch. Energy & Fuels. 2020. Vol. 34. pp. 8676–8684. DOI: 10.1021/acs.energyfuels.0c01049.
31. Pysz R. W., Hoff S. L., Heintz E. A. Terminology for the structural evaluation of coke via scanning electron microscopy. Carbon. 1989. Vol. 27. pp. 935–944. DOI: 10.1016/0008-6223(89)90045-6.
32. Pyagay I. N., Shaidulina A. A., Konoplin R. R., Artyushevskiy D. I. et al. Production of amorphous silicon dioxide derived from aluminum fluoride industrial waste and consideration of the possibility of Its use as Al2O3 – SiO2 catalyst supports. Catalysts. 2022. Vol. 12. p. 162. DOI: 10.3390/catal12020162.
33. Zolotarev F. D., Aleksandrova T. N., Bogorodskiy A. V., Zhadovskiy I. T. Use of halogen containing noble metal solvents in pressure oxidation technology. Tsvetnye Metally. 2015. No. 10. pp. 60–63. DOI: 10.17580/tsm.2015.10.10.
34. Brooks J. D., Taylor G. H. The formation of graphitizing carbons from the liquid phase. Carbon. 1965. Vol. 3. pp. 185–193. DOI: 10.1016/0008-6223(65)90047-3.
35. GOST 26132–84. Petroleum and pitch cokes. Microstructure evaluation method. Introduced: 28.03.1984.
36. Sultanbekov R., Islamov S., Mardashov D., Beloglazov I., Hemmingsen T. Research of the influence of marine residual fuel composition on sedimentation due to incompatibility. Journal of Marine Science and Engineering. 2021. Vol. 9. p. 1067. DOI: 10.3390/jmse9101067.
37. Sizyakov V. M., Litvinova T. E., Brichkin V. N., Fedorov A. T. Modern physicochemical equilibrium description in Na2O – Al2O3 – H2O system and its analogues. Journal of Mining Institute. 2019. Vol. 237. pp. 298–306. DOI: 10.31897/pmi.2019.3.298.
38. Bragg W. L. The structure of some crystals as indicated by their diffraction of X-rays. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 1913. Vol. 89. pp. 248–277. DOI: 10.1098/rspa.1913.0083.
39. Wulff G. Über die Kristallröntgenogramme. Physikalische Zeitschrift. 1913. Vol. 14. pp. 217–220.
40. Scherrer P. Bestimmung der inneren Struktur und der Gröβe von Kolloidteilchen mittels Rontgenstrahlen. Kolloidchemie. Ein Lehrbuch, Sprin ger Berlin Heidelberg, Berlin, Heidelberg. 1912. pp. 387–409. DOI: 10.1007/978-3-662-33915-2_7.
41. Warren B. E. X-ray diffraction in random layer lattices. Physical Review. 1941. Vol. 59. pp. 693–698. DOI: 10.1103/PhysRev.59.693.
42. Ismagilov Z. R., Nikitin A. P., Mikhaylova E. S. Molecular structure of needle coke carbon framework: Raman spectral data. Coke and Chemistry. 2021. Vol. 64. pp. 322–326. DOI: 10.3103/S1068364X2107005X.
43. Chen K., Zhang H., Ibrahim U.-K., Xue W. et al. The quantitative assessment of coke morphology based on the Raman spectroscopic characterization of serial petroleum cokes. Fuel. 2019. Vol. 246. pp. 60–68. DOI: 10.1016/j.fuel.2019.02.096.
44. Ershov M. A., Potanin D. A., Grigorieva E. V., Abdellatief T. M., Kapustin V. M. Discovery of a high-octane environmental gasoline based on the gasoline Fischer-Tropsch process. Energy & Fuels. 2020. Vol. 34. pp. 4221–4229. DOI: 10.1021/acs.energyfuels.0c00009.
45. Sadezky A., Muckenhuber H., Grothe H., Niessner R., Pöschl U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon. 2005. Vol. 43. pp. 1731–1742. DOI: 10.1016/j.carbon.2005.02.018.
46. Lahfid A., Beyssac O., Deville E., Negro F. et al. Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland). Terra Nova. 2010. Vol. 22. pp. 354–360. DOI: 10.1111/j.1365-3121.2010.00956.x.
47. Non-linear least-squares minimization and curve-fitting for Python. Available at: https://lmfit.github.io/lmfit-py (Accessed: 25.03.2022).
48. Cuesta A., Dhamelincourt P., Laureyns J., Martínez-Alonso A. et al. Raman microprobe studies on carbon materials. Carbon. 1994. Vol. 32. pp. 1523–1532. DOI: 10.1016/0008-6223(94)90148-1.
49. Wang Y., Alsmeyer D. C., McCreery R. L. Raman spectroscopy of carbon materials: structural basis of observed spectra. Chemistry of Materials. 1990. Vol. 2. pp. 557–563. DOI: 10.1021/cm00011a018.
50. Xiao J., Li F., Zhong Q., Huang J. et al. Effect of high-temperature pyrolysis on the structure and properties of coal and petroleum coke. Journal of Analytical and Applied Pyrolysis. 2016. Vol. 117. pp. 64–71. DOI: 10.1016/j.jaap.2015.12.015.
51. Qin B., Wang Q., Wang F., Jin L. Preparation of needle cokes with high electrical conductivity and low coefficient of thermal expansion. Chinese Journal of Materials Research. 2019. Vol. 33. pp. 53–58. DOI: 10.11901/1005.3093.2017.787.

Language of full-text russian
Full content Buy
Back