Journals →  Цветные металлы →  2022 →  #7 →  Back

Композиционные материалы и многофункциональные покрытия
ArticleName Лигатуры Al – Ti – B: структурообразование в модифицированных сплавах
DOI 10.17580/tsm.2022.07.06
ArticleAuthor Ковальская К. В., Горланов Е. С.
ArticleAuthorData

Санкт-Петербургский горный университет, Санкт-Петербург, Россия:

К. В. Ковальская, сотрудник научного центра, эл. почта: Kovalskaya_KV@pers.spmi.ru
Е. С. Горланов, заместитель директора по научному обеспечению, докт. техн. наук, профессор, эл. почта: Gorlanov_ES@pers.spmi.ru

Abstract

В статье представлен обзор существующих механизмов измельчения зерна и описана кинетика затвердевания сплавов, модифицируемых системой Al – Ti – B. Практический интерес представляют интерметаллидные соединения бинарной системы Al – Ti, диаграмма состояния которой до сих пор полностью не исследована. Определено, что на поведение этой системы при низких концентрациях титана существенное влияние оказывает перитектическая реакция с образованием α-зерен алюминия на частицах алюминида титана (TiAl3). Уникальность системы Al – Ti обусловлена наибольшим значением скорости ограниченного роста Q по сравнению с другими сплавами, что является причиной повышенной эффективности измельчения зерна. Микрочастицы диборида титана (TiB2), образующиеся в жидком состоянии системы Al – Ti – B, выступают в роли центров кристаллизации для зарождения промежуточной фазы TiAl3. При этом обнаружено, что TiAl3 проявляет метастабильные свойства и растворяется в процессе затвердевания алюминия. Классическая теория кристаллизации определяет важность гетерогенных субстратов как механизма снижения энергетического барьера для зарождения зерен. Согласно теории гетерогенного зародышеобразования, переохлаждение при зарождении зерен резко возрастает с увеличением несоответствия кристаллической решетки твердого тела и подложки. Таким образом, с точки зрения теории конституционального переохлаждения, необходимо более низкое переохлаждение для зарождения зерна на частице. Этому способствуют снижение скорости выделения скрытого тепла и малые темпы роста зерен. При введении лигатуры в расплав выявлены понижение эффективности модифицирования (c содержанием >1,5 %), эффект затухания лигатуры при длительной выдержке в расплаве, понижение растворимости Ti в присутствии Si. Также рассмотрено улучшение свойств лигатур — дробление TiAl3 пластической деформацией и деагломерация частиц TiB2 путем перемешивания бесконтактными методами.

keywords Лигатура Al – Ti – B, алюминид титана, диборид титана, гетерогенное зародышеобразование, зарождение, ограничение роста, растворенное вещество, переохлаждение
References

1. Sidelnikov S. B., Voroshivlo D. S., Startsev A. A. et al. Understanding the parameters of combined processing for producing Al – Ti – B grain refiners. Tekhnika i tekhnologii. 2015. Vol. 8, No. 5. pp. 646–654.
2. Shlyannikov V., Zakharov A., Tumanov A., Gerasimenko A. Surface flaws behavior under tension, bending and biaxial cyclic loading. International Journal of Fatigue. 2016. Vol. 92. pp. 557–576. DOI: 10.1016/j.ijfatigue.2016.05.003.
3. Alattar A. L., Bazhin V. Yu. Al – Cu – B4C composite materials for the production of high-strength billets. Metallurgist. 2020. Vol. 64, No. 5. pp. 566–573. DOI: 10.1007/s11015-020-01028-2.
4. Savchenkov S. A. The research of obtaining master alloys magnesiumgadolinium process by the method of metallothermic recovery. Tsvetnye Metally. 2019. No. 5. pp. 33–39. DOI: 10.17580/tsm.2019.05.04.
5. Kosov Y. I., Bazhin V. Y., Kopylova T. N. et al. Effect of the technological parameters of the aluminothermic reduction of erbium oxide in chloride – fluoride melts on the transition of erbium to a master alloy. Russian Metallurgy. 2019. Iss. 9. pp. 856–862. DOI: 10.1134/S0036029519090040.
6. Makarenko A. G. Developing a self-propagating high-temperature synthesis p rocess involving gas filtration for waste titanium and titanium alloy recycling. Journal of Mining Institute. 2003. Vol. 154. pp. 189–192.
7. Kaminskiy V. V., Petrovich S. Yu., Lipin V. A. Production of intermetallic compounds in the Al – Ti – Zn system. Journal of Mining Institute. 2018. Vol. 233. pp. 512–517. DOI: 10.31897/PMI.2018.5.512.
8. Kurganova Yu. A., Shcherbakov S. P. Effect of the discreet additive of aluminium oxide on the stru cture and properties of aluminium alloy. Journal of Mining Institute. 2017. Vol. 228. p. 717. DOI: 10.25515/PMI.2017.6.717.
9. Baymakov A. Yu., Petrovich S. Yu., Seytenov S. A. et al. Microalloying of alumi nium as a way to modify the oxide film properties in powders. Journal of Mining Institute. 2013. Vol. 202. pp. 278–283.
10. Dobrzanski L. A., Maniara R., Sokolowski J. Effect of cooling rate on the solidification behavior of AC AlSi7Cu2 alloy. Journal of Mining Institute. 2007. Vol. 170. pp. 151–155.
11. Sineva S. I., Starykh R. V., Novozhilova O. S. et al. Study of the structure and properties of Fe – Ni – Co – (Cu, Cr) alloys using a combination of experimental metho ds. Metally. 2019. Vol. 2019, No. 2. pp. 124–126. DOI: 10.1134/S0036029519020253.
12. Kumar G. S. V., Murty B. S., Chakraborty M. Grain refinement response of LM25 alloy towards Al – Ti – C and Al – Ti – B grain ref iners. Journal of Alloys and Compounds. 2009. Vol. 472, No. 1-2. pp. 112–120.
13. Easton M., Qian M., Prasad A. Recent advances in grain refinement of light metals and alloys. Current Opinion in Solid State and Materials Science. 2016. Vol. 20, No. 1. pp. 13–24.
14. Iqbal N., van Dijk N. H., Offerman S. E. In situ investigation of the crystallization kinetics and the mechanism of grain refinement in aluminum alloys. Materials Science and Engineering: A. 2006. Vol. 416, No. 1-2. pp. 18–32.
15. Savchenkov S., Kosov Y., Bazhin V., Krylov K., Kawalla R. Microstructural master alloys features of aluminum – erbium system. Crystals. 2021. Vol. 11, No. 11. p. 1353. DOI: 10.3390/cryst11111353.
16. Wang J., Horsfield A., Lee P. D., Brommer P. Heterogeneous nucleation of solid Al from the melt by Al3Ti: Molecular dynamics simulations. Physical Review B. 2010. Vol. 82, No. 14. pp. 144–203.
17. Iqbal N., van Dijk N. H., Hansen T. C., Katgerman L. The role of solute titanium and TiB2 particles in the liquid-solid phase transformation of aluminum alloys. Materials Science and Engineering: A. 2004. Vol. 386, No. 1-2. pp. 20–26.
18. Wang Y., Zeng X., Ding W. et al. Grain refinement of AZ31 magnesium alloy by titanium and low-frequency electro magnetic casting. Metallurgical and Materials Transactions: A. 2007. Vol. 38, No. 6. pp. 1358–1366.
19. Aryshnskii E. V., Bazhin V. Y., Kawalla R. Strategy of refining the structure of aluminummagnesium alloys by complex microalloying with transition elements during casting and subsequent thermomechanical processing. Non-Ferrous Metals. 2019. Vol. 46, Iss. 1. pp. 28–32. DOI: 10.17580/nfm.2019.01.05.
20. Men H., Fan Z. Atomic ordering in liquid aluminium induced by substrates with misfits. Computational Materials Science. 2014. Vol. 85. pp. 1–7.
21. Fan Z. An epitaxial model for heterogeneous nucleation on potent substrates. Metallurgical and Materials Transactions A. 2013. Vol. 44, No. 3. pp. 1409–1418.
22. Kelly P. M., Zhang M. X. Edge-to-edge match ing — the fundamentals. Metallurgical and Materials Transactions A. 2006. Vol. 37, No. 3. pp. 833–839.
23. Nikitin V. I. Heredity in cast alloys: A learner’s guide based on a lecture course. Samara : Samarskiy gosudarstvennyi tekhnicheskiy universitet, 2015. 170 p.
24. StJohn D. H., Prasad A., Easton M., Qian M. The contribution of constitutional supercooling to nucleation and grain formation. Metallurgical and Materials Transactions A. 2015. Vol. 46, No. 11. pp. 4868–4885.
25. Zadiranov A. N., Kats A. M. Fundamentals of crystallization in metals and alloys: A learner’s guide. Moscow : MGIU, 2008. 194 p.
26. Easton M. A., StJohn D. H., Prasad A. Grain refinement of aluminium alloys: recent developments in predicting the as-cast grain size of alloys refined by Al – Ti – B master alloys. Light Metals. 2014. Vol. 2014. pp. 939–944.
27. Men H., Fan Z. An analytical model for solute segregation at liquid metal/solid substrate interface. Metallurgical and Materials Transactions A. 2014. Vol. 45, No. 12. pp. 5508–5516.
28. Alamdari H. D., Dubé D., Tessier P. Behavior of boron in molten aluminum and its grain refinement mechanism. Metallurgical and Materials Transactions A. 2013. Vol. 44, No. 1. pp. 388–394.
29. Iqbal N., van Dijk N. H., Offerman S. E., Moret M. P. Real-time observation of grain nucleation and growth during solidification of aluminium alloys. Acta Materialia. 2005. Vol. 53, No. 10. pp. 2875–2880.
30. Hotea V., Juhasz J., Cadar F. Grain refinement of 7075Al alloy microstructures by inoculation w ith Al – Ti – B master alloy. IOP Conference Series: Materials Science and Engineering. 2017. Vol. 200, No. 1. pp. 012–029.
31. Jia Y., Wang S., Shu D. Grain size prediction and investigation of 7055 aluminum alloy inoculated by Al – 5Ti – 1B master alloy. Journal of Alloys and Compounds. 2020. Vol. 821. pp. 153–504.
32. Jianhua W., Jianfeng H., Xuping S., Changjun W. Effect of reverse modificat ion of Al – 5Ti – B master alloy on hypoeutectic ZnAl4Y alloy. Materials and Design. 2012. Vol. 38. pp. 133–138.
33. Fan Z.,Wang Y., Zhang Y., Qin T., Zhou X. R. et al. Grain refining mechanism in the Al/Al – Ti – B system. Acta Materialia. 2015. Vol. 84. pp. 292–304.
34. Greer A. L., Bunn A. M., Tronche A., Evans P. Modelling of inoculation of metallic melts: application to grain refinement of aluminium by Al – Ti – B. Acta Materialia. 2000. Vol. 48, No. 11. pp. 2823–2835.
35. Wang E., Gao T., Nie J., Liu X. Grain refinement limit and mechanical properties of 6063 alloy inoculated by Al – Ti – C (B) m aster alloys. Journal of Alloys and Compounds. 2014. Vol. 594. pp. 7–11.
36. Elsayed A., Ravindran C., Murty B. S. Effect of aluminum-titanium-boron based grain refiners on AZ91E magnesium alloy grain size and microstructure. International Journal of Metalcasting. 2011. Vol. 5, No. 2. pp. 29–41.
37. Baranov M. V., Mysik R. K., Sulitsin A. V., Brusnitsyn S. V. Inoculation of aluminium with Al – 5Ti – 1B master alloy. Liteyshchik Rossii. 2018. No. 6. pp. 5–8.
38. Budelovskiy D. I., Petrov ich S. Yu., Lipin V. A. Formation and growth of nanodispersed intermetallic hardening inclusions in rapidly solidified alloys of the Al – Mg – Zr – X system. Journal of Mining Institute. 2018. Vol. 230. pp. 139–145. DOI: 10.25515/PMI.2018.2.139.
39. Aleksandrovskii S. V., Érdanov A. R. Impact of process factors on production of aluminum master alloys containing zirconium and scandium. Metallurgist. 2007. Vol. 51, No. 7–8. pp. 394–398. DOI: 10.1007/s11015-007-0071-8.
40. Wang G., Wang E. Q., Prasad A. et al. Grain refinement of Al – Si hypoeutectic alloys by Al3Ti1B master alloy and ultrasonic treatment. Shape Casting: 6 th International Symposium. 2016. pp. 143–150.
41. Venkateswarlu K., Murty B. S., Chakraborty M. Effect of hot rolling and heat treatment of Al – 5Ti – 1B master alloy on the grain refining efficiency of aluminium. Materials Science and Engineering: A. 2001. Vol. 301, No. 2. pp. 180–186.
42. Ghadimi H., Nedjhad S. H., Eghbali B. Enhanced grain refinement of cast aluminum alloy by thermal and mechanical treatment of Al – 5Ti – B master alloy. Transactions of Nonferrous Met als Society of China. 2013. Vol. 23, No. 6. pp. 1563–1569.
43. Liang D., Sun J., Liu T. et al. Enhanced heterogeneous nucleation by pulsed magneto-oscillation treatment of liquid aluminum containing Al3Ti1B additions. Advanced Engineering Materials. 2015. Vol. 17, No. 10. pp. 1465–1469.
44. Wang G., Dargusch M . S., Eskin D. G., John D. H. Identifying the stages during ultrasonic processing that reduce the grain size of aluminum with added Al3Ti1B master alloy. Advanced Engineering Materials. 2017. Vol. 19, No. 8. pp. 170–264.
45. Wang E. Q., Wang G., Dargusch M. S. et al. Grain refinement of an Al – 2 wt% Cu alloy by Al3Ti1B master alloy and ultrasonic treatment. IOP Conference Series: Materials Science and Engineering. 2016. Vol. 117, No. 1. p. 012050.

Language of full-text russian
Full content Buy
Back