Journals →  Tsvetnye Metally →  2022 →  #5 →  Back

RARE METALS, SEMICONDUCTORS
ArticleName Crowding of neodymium ions as a structural feature of fluorophosphate glasses
DOI 10.17580/tsm.2022.05.06
ArticleAuthor Karapetyan K. G., Denisova O. V.
ArticleAuthorData

Saint Petersburg Mining University, Saint Petersburg, Russia:

K. G. Karapetyan, Head of General Chemistry Department, Doctor of Technical Sciences, Associate Professor, e-mail: karapetyan_kg@pers.spmi.ru
O. V. Denisova, Associate Professor at the Department of Electronic Systems, Candidate of Chemical Sciences, Associate Professor, e-mail: denisova_ov@pers.spmi.ru

Abstract

The rare-earth element of neodymium is used as a doping agent for a variety of alloys, as the base element for super magnets and in cryogenic industry. Inorganic glass industry represents a separate application for neodymium oxide. Having a high quantum yield of luminescence, such glasses are essential for the production of high-power optical quantum generators. Fluorophosphate glasses have a complex composition, specific physicochemical properties and spectral characteristics, and demonstrate specific matrix forming patterns when modifiers or glass forming agents are introduced. The current structural description of fluorophosphate glasses is lacking, which gives relevance to further studies into the structure of Ba(PO3)2 based pseudobinary glass system and barium fluoroaluminate. Microadditions of neodymium oxide were introduced as an activator during glass synthesis. Such glasses can be used as laser material. The authors examined the absorption and luminescence spectra of glass specimens containing neodymium. It is shown that fluorophosphate glasses are structurally heterogeneous systems that contain two typical activator coordination environments; introduction of fluorides in Ba(PO3)2 glass leads to neodymium ion segregation in the phosphate glass matrix. Specimens of crystallization resistant optical glass have been obtained. The paper describes optimum compositions of neodymium activated fluorophosphate glasses that retain the advantages of phosphate glass systems while shorter neodymium luminescence lifetimes have no noticeable impact on the glass performance.

keywords Neodymium, activator, fluorophosphate glasses, structurally heterogeneous systems, activator segregation processes, structural microinhomogeneities
References

1. Ponomareva M. A., Cheremisina O. V., Mashukova Yu. A., Lukiantseva E. S. Optimized recovery of rare-earth metals from process solutions in an apatite ore processing circuit. Zapiski Gornogo instituta. 2021. Vol. 252. pp. 917–926. DOI: 10.31897/PMI .2021.6.13.
2. Cheremisina O. V., Cheremisina E., Ponomareva M. A., Fedorov A. T. Sorption of coordination compounds of rare earth elements. Zapiski Gornogo instituta. 2020. Vol. 244. pp. 474–481. DOI: 10.31897/ PMI.2020.4.10.
3. Kosov Y. I., Bazhin V. Y., Kopylova T. N. Effect of the Technological Parameters of the Aluminothermic Reduction of Erbium Oxide in Chloride–Fluoride Melts on the Transition of Erbium to a Master Alloy. Russian Metallurgy (Metally). 2019. Vol. 2019, Iss. 9. pp. 856–862. DOI: 10.1134/S0036029519090040.
4. Milyuts V. G., Tsukanov V. V., Pryakhin E. I., Nikitina L. B. Development of manufacturing technology for high-strength hull steel reducing production cycle and providing high-quality sheets. Journal of Mining Institute. 2019. Vol. 239. pp. 536–543. DOI: 10.31897/PMI.2019.5.536.
5. Beloglazov I. I., Savchenkov S. A., Bazhin V. Y., Kawalla R. Synthesis of Mg – Zn – Nd Master Alloy in Metallothermic Reduction of Neodymium from Fluoride – Chloride Melt. Crystals. 2020. Vol. 10. p. 985. DOI: 10.3390/cryst10110985.
6. Savchenkov S. A., Bazhin V. Y., Brichkin V. N., Kosov Y. I., Ugolkov V. L. Production Features of Magnesium-Neodymium Master Alloy Synthesis. Metallurgist. 2019. Vol. 63. pp. 394–402. DOI: 10.1007/s11015-019-00835-6.
7. Kabanov V. O., Karapetyan G. O., Rusan V. V. Structural role of GeO2 in sodium germanat phosphate glasses. Physics and Chemistry of Glass. 1991. Vol. 17, Iss. 4. pp. 557–562.
8. Pashkevich M. A., Petrova T. A. Development of an operational environmental monitoring system for hazardous industrial facilities of Gazprom Dobycha Urengoy. Journal of Physics: Conference Series. 2019. No. 1384. pp. 1–7. DOI: 10.1088/1742-6596/1384/1/012040.
9. Sobianina D. O., Kogan V. E., Zgonnik P. V., Shakhparonova T. S., Suvorova Z. V. The physicochemical bases of oil and oil products absorption by glassy sorbents. Rasayan Journal of Chemistry. 2021. No 14. P. 2006–2016. DOI 10.12912/27197050/133331.
10. Kogan V. E., Shakhparonova T. S. Chemistry as a basis for solving environmental issues. Journal of Mining Institute. 2017. Vol. 224. pp. 223–228. DOI: 10.18454/PMI.2017.2.223.
11. Napsikov V. V., Kogan V. E. Non-crystalline mineral fertilizers and their industrial production. Journal of Mining Institute. 2005. Vol. 165. pp. 123–127.
12. I. Yu. Limbakh, G. O. Karapetyan, K. G. Karapetyan, I. I. Novikov, I. V. Boykova. Biava, a bio-product for land reclamation. Production. Patent RF, No. 2248255. Applied: 05.09.2003. Published: 20.03.2005. Bulletin No. 8.
13. Bogdanov O. A., Perevislov S. N., Kolobkova E. V. Thermomechanical Properties and Structure of Fluorophosphate Glasses Activated with Nd3+ at Different Concentrations of Ba(PO3)2. Glass Physics and Chemistry. 2021. Vol. 47, No. 4. pp. 334–339. DOI: 10.1134/S1087659621040052.
14. Bogdanov O., Kolobkova E. The impact of the lead on the physicochemical and optical properties of the fluorophosphate glasses doped by Nd3+ ions. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 848. 012010. DOI: 10.1088/1757-899X/848/1/012010.
15. ElBatal F. H., Azooz M. A., EzzElDin F. M., ElBatal H. A., Hamdy Y. M. Effect of melting condition on optical, FTIR and E.S.R properties of irradiated fluorophosphate glasses containing vanadium ions. Journal of Materials Science: Materials in Electronics. 2021. Vol. 32. pp. 8418–8428. DOI: 10.1007/s10854-021-05450-3.
16. Murthy M. K. Phosphate-halide systems: сonstitution of NaPO3 – NaF glasses. Journal of the American Ceramic Society. 1963. Vol. 46. pp. 530–535.
17. Petrovskiy G. T., Galant V. E., Urusovskaya L. N. Evolution of studies into fluorophosphate glass systems. Doklady Akademii nauk SSSR. 1981. Vol. 257, No. 2. pp. 374–377.
18. Bessmertnyi V. S. Evaluation of the competitiveness of wall building materials with glassy protective-decorative coatings obtained by plasma fusing. Glass and Ceramics. 2015. Vol. 72, Iss. 1–2. pp. 41–46. DOI: 10.1007/s10717-015-9719-1.
19. Kogan V. E., Zgonnik P. V., Kovina D. O., Chernyaev V. A. Glassy and polymeric materials: effective oil sorbents. Glass and Ceramics. 2014. Vol. 10, Iss. 11-12. pp. 425–428. DOI: 10.1007/s10717-014-9594-1.
20. Yatsenko E. A., Goltsman B. M., Yatsenko L. A., Karandashova N. S., Smolii V. A. Application of computer technologies for modeling the process of formation of the porous structure of foamed glass. Glass and Ceramics. 2017. Vol. 74, No. 7-8. pp. 267–269. DOI: 10.1007/s10717-017-9976-2.
21. Yatsenko E. A. Effect of P2O5 addition on Li2TiO3 crystallization with opacification of white single-layer glass enamel coatings. Glass and Ceramics. 2011. Vol. 67, No. 11–12. pp. 390–392. DOI: 10.1007/s10717-011-9307-y.
22. Kolobkova E. V., Kuznetsova M. S., Nikonorov N. V. Perovskite CsPbX3 (X=Cl, Br, I) Nanocrystals in fluorophosphate glasses. Journal of Non-Crystalline Solids. 2021. Vol. 563. 120811. DOI: 10.1016/j.jnoncrysol.2021.120811.
23. Kolobkova E. V., Alkhlef A., Kuzmenko N., Khodasevich I. A., Grabtchikov A. NIR and visible luminescence of Er3+/Yb3+ co-doped fluorophosphate glasses with small additives of phosphates. Journal of Luminescence. 2021. Vol. 235. 118033. DOI: 10.1016/j.jlumin.2021.118033.
24. Zhou R., Calahoo C., Ding Y., Romao C. P., Wondraczek L. Structural Origin of the Optical Properties of Ag-Doped Fluorophosphate and Sulfophosphate Glasses. Journal of Physical Chemistry B. 2021. Vol. 125, Iss. 2. pp. 637–656. DOI: 10.1021/acs.jpcb.0c09375.
25. Kolobkova E. V., Alkhlef A., Yasyukevich A. S. The Influence of Phosphate Concentration on the Spectral Properties of Thulium Ions in Fluorophosphate Glasses. Optics and Spectroscopy. 2020. Vol. 128. pp. 2015–2021. DOI: 10.1134/S0030400X20120930.
26. Abo-Mosallam H. A., Mahdy E. A. Synthesis and characterization of sodium calcium fluorophosphate glasses containing MoO3 for potential use in sealing applications. Journal of Non-Crystalline Solids. 2020. Vol. 546. 120279. DOI: 10.1016/j.jnoncrysol.2020.120279.
27. Bellanger B., Ledemi Y., Messaddeq Y. Fluorophosphate Glasses with High Terbium Content for Magneto-optical Applications. Journal of Physical Chemistry C. 2020. Vol. 124(9). pp. 5353–5362. DOI: 10.1021/acs.jpcc.9b11696.
28. Ji Y., Xiao Y. B., Wang W. C., Huang S. J., Zhang Q. Y. The structure and properties of Nd3+-doped fluoro-sulfo-phosphate glasses under different melt conditions. Journal of Non-Crystalline Solids. 2020. Vol. 531. 119839. DOI: 10.1016/j.jnoncrysol.2019.119839.
29. Möncke D., Eckert H. Review on the structural analysis of fluoridephosphate and fluoro-phosphate glasses. Journal of Non-Crystalline Solids: X. 2019. Vol. 3. 100026. DOI: 10.1016/j.nocx.2019.100026.
30. De Castro T., Fares H., Khalil A. A., Cardinal T., Canioni L. Femtosecond laser micro-patterning of optical properties and functionalities in novel photosensitive silver-containing fluorophosphate glasses. Journal of Non-Crystalline Solids. 2019. Vol. 517. pp. 51–56. DOI: 10.1016/j.jnoncrysol. 2019.04.012.
31. Neelima G., Venkata Krishnaiah K., Ravi N., Tyagarajan K., Jayachandra Prasad T. Investigation of optical and spectroscopic properties of neodymium doped oxyfluoro-titania-phosphate glasses for laser applications. Scripta Materialia. 2019. Vol. 162. pp. 246–250. DOI: 10.1016/j.scriptamat.2018.11.018.
32. Sreedhar V. B., Venkata Krishnaiah K., Nayab Rasool S. K., Venkatramu V., Jayasankar C. K. Raman and photoluminescence studies of europium doped zinc-fluorophosphate glasses for photonic applications. Journal of Non-Crystalline Solids. 2019. Vol. 505. pp. 115–121. DOI: 10.1016/j.jnoncrysol.2018.10.035.
33. Dmitriuk A. V., Karapetyan G. O., Maksimov L. V. The phenomenon of activator segregation and its spectroscopic consequences. Journal of Applied Spectroscopy. 1975. Vol. XXII, Iss. 1. pp. 153–182. DOI: 10.1007/BF00613406.
34. Dmitriuk A. V., Karapetyan G. O., Maksimov L. V. Effect of activator segregation on energy transfer in glasses. Journal of Applied Spectroscopy. 1973. Vol. XVIII, Iss. 5. pp. 869–872.
35. Romero J. J., Jaque D., Garcia-Sole U., Caldino G. Concentration effect on the up-conversion luminescence of neodymium activated calcium gallium germanium garnet crystal. Journal of Alloys and Compounds. 2001. Vol. 323-324. pp. 312–314. DOI: 10.1016/S0925-8388(01)01076-3.

Language of full-text russian
Full content Buy
Back