ArticleName |
Structure and properties of powder alloys Fe–(45-15)%Ni–(10-5)%Cu, obtained via mechanical alloying |
ArticleAuthorData |
National University of Science and Technology “MISiS”, Moscow, Russia:
P. A. Loginov, Cand. Eng., Assistant Prof., Dept. of Powder Metallurgy and Functional Coatings (PMFC), Researcher of Scientific and Educational Center of SHS MISIS–ISMAN, e-mail: pavel.loginov.misis@list.ru E. N. Avdeenko, Cand. Eng., Junior researcher, Scientific and Educational Center of SHS MISIS–ISMAN, e-mail: avdeenko.misis@mail.ru A. A. Zaitsev, Cand. Eng., Assistant Prof., Dept. of Powder Metallurgy and Functional Coatings (PMFC), Senior researcher of Scientific and Educational Center of SHS MISIS–ISMAN, e-mail: aazaitsev@bk.ru (corresponding author) E. A. Levashov, Dr. Eng., Prof., Academician of Russian Academy of Natural Science, Head of the Department of (PMFC), Head of Research & Education Center of SHS MISIS–ISMAN, e-mail: levashov@shs.misis.ru |
Abstract |
The article investigates the structure and properties of Fe–(45-15)%Ni–(10-5)%Cu powder alloys. The production method included low- and high-energy (mechanical alloying, МА) treatment of Fe, Ni, and Cu powders in a planetary ball mills followed by hot-pressing of mixes at 950 °С. After MA, the mixtures consist of composite granules with a lamellar structure and particle size of 10–100 μm. After low-energy treatment, three phases were detected by XRD in hot-pressed samples: α-Fe-based solid solution BCC-(Fe, Ni, Cu), Ni-based solid solution FCC-(Ni, Fe, Cu), and FCC-FeO. The appearance of FeO is caused by the partial oxidation of iron during mixing and hot pressing. The total oxide content does not exceed 1.3 wt%. For Fe-X% Ni-5% Cu alloys the ultimate bending strength depends on the nickel content (X, %) linearly according to the equation σben = −19⋅X + 1995 [MPa], where 15 % ≤ X ≤45 %. Alloys obtained by MA have a homogeneous structure and depending on the composition can be either two- or three-phase. As a result of MA the hardness of the alloys increased by 20–21 HRB, and the ultimate bending strength increases by 300–540 MPa. The alloy with the composition 80%Fe-15%Ni-5%Cu has the maximum bending strength σben = 2135 ± 60 MPa. The wear of MA alloys is (4.1–4.4)⋅10−5 mm3 /(N⋅m) which is more than two times lower than the wear of alloys obtained by low-energy treatment.
This work was carried out with financial support from the Russian Science Foundation (Project No. 17-79-20384). |
References |
1. Tönshoff H. K., Hillmann-Apmann H., Asche J. Diamond tools in stone and civil engineering industry: cutting principles, wear and applications. Diamond and Related Materials. 2002. Vol. 11. Iss. 3-6. pp. 736–741. DOI: 10.1016/S0925-9635(01)00561-1 2. Brook B. Principles of diamond tool technology for sawing rock. International Journal of Rock Mechanics and Mining Sciences. 2002. Vol. 39. Iss. 1. pp. 41–58. DOI: 10.1016/S1365-1609(02)00007-2 3. Di Ilio A., Togna A. A theoretical wear model for diamond tools in stone cutting. International Journal of Machine Tools and Manufacture. 2003. Vol. 43. Iss. 11, pp. 1171–1177. DOI: 10.1016/S0890-6955(03)00101-9 4. Turchetta S., Sorrentino L., Bellini C. A method to optimize the diamond wire cutting process. Diamond and Related Materials. 2017. Vol. 71. pp. 90-97. DOI: 10.1016/j.diamond.2016.11.016 5. Konstanty J. S., Tyrala D. Wear mechanism of iron-base diamond-impregnated tool composites. Wear. 2013. Vol. 303, Iss. 1–2. pp. 533–540. DOI: 10.1016/j.wear.2013.04.016 6. Ersoy A., Buyuksagic S., Atici U. Wear characteristics of circular diamond saws in the cutting of different hard abrasive rocks. Wear. 2005. Vol. 258. Iss. 9. pp. 1422–1436. DOI: 10.1016/j.wear.2004.09.060 7. Zeren M., Karagoz S. Sintering of polycrystalline diamond cutting tools. Materials & Design. 2007. Vol. 28. Iss. 3. pp. 1055–1058. DOI: 10.1016/j.matdes.2005.09.018 8. Sharin P. P., Akimova M. P., Yakovleva S. P. Structure and strength of the interfacial zone in solid-phase contact interaction of diamond with transition metals. Procedia Structural Integrity. 2019. Vol. 20. pp. 236–241. DOI: 10.1016/j.prostr.2019.12.145. 9. Tillmann W., Ferreira M., Steffen A., Rüster K., Möller J., Bieder S., Paulus M., Tolan M. Carbon reactivity of binder metals in diamond–metal composites — characterization by scanning electron microscopy and X-ray diffraction. Diamond and Related Materials. 2013. Vol. 38. pp. 118–123. DOI: 10.1016/j.diamond.2013.07.002 10. Ay H., Yang W. J. Heat transfer and life of metal cutting tools in turning. International Journal of Heat and Mass Transfer. 1998. Vol. 41. Iss. 3. pp. 613–623. DOI: 10.1016/S0017-9310(97)00105-1 11. Zhao X., Li J., Duan L., Tan S., Fang X. Effect of Fe-based pre-alloyed powder on the microstructure and holding strength of impregnated diamond bit matrix. International Journal of Refractory Metals and Hard Materials. 2019. Vol. 79. pp. 115–122. DOI: 10.1016/j.ijrmhm.2018.11.015 12. Hou M., Guo S., Yang L., Gao J., Peng J., Hu T., Wang L., Ye X. Fabrication of Fe–Cu matrix diamond composite by microwave hot pressing sintering. Powder Technology. 2018. Vol. 338. pp. 36–43. DOI: 10.1016/j.powtec.2018.06.043 13. Loginov P. A., Sidorenko D. A., Levashov E. A., Petrzhik M. I., Bychkova M. Y., Mishnaevsky L. Hybrid metallic nanocomposites for extra wear-resistant diamond machining tools. International Journal of Refractory Metals and Hard Materials. 2018. Vol. 71. pp. 36–44. DOI: 10.1016/j.ijrmhm.2017.10.017 14. Dai H., Wang L., Zhang J., Liu Y., Wang Y., Wang L., Wan X. Iron based partially pre-alloyed powders as matrix materials for diamond tools. Powder Metallurgy. 2015. Vol. 58. Iss. 2. pp. 83–86. DOI: 10.1179/0032589915Z.000000000220 15. Li M., Sun Y., Meng Q., Wu H., Gao K., Liu B. Fabrication of Febased diamond composites by pressureless infiltration. Materials. 2016. Vol. 9. Iss. 12. p. 1006. DOI: 10.3390/ma9121006 16. Smithells Metals Reference Book, 7th edition, Butterworth-Heinemann, Oxford, UK, I992, p. 1800 17. Xie D. L., Wan L., Song D. D. Pressureless sintering curve and sintering activation energy of FeCoCu pre-alloyed powders. Materials & Design. 2015. Vol. 87. pp. 482–487. DOI: 10.1016/j.matdes.2015.08.054 18. Xie Z.G., Qin H. Q., Liu X. Y., Wang J. B., Jiang J. F. Study on the preparation of the prealloyed powder and its application for diamond tools. Journal of Materials Engineering. 2011. Vol. 5. Iss. 3. pp. 1–5. DOI: 10.3969/j.issn.1001-4381.2013.06.001 19. Suryanarayana C. Mechanical alloying and milling. Progress in Materials Science. 2001. Vol. 46, Iss. 1–2. pp. 1–184. DOI: 10.1016/S0079-6425(99)00010-9 20. Uenishi K., Kobayashi K. F., Nasu S., Hatano H., Ishibara K. N., Shingu P. H. Mechanical alloying in the Fe-Cu system. Zeitschrift für Metallkunde. 1992. Vol. 83. Iss. 2. S. 132-135. 21. Mondal B. N., Basumallick A., Chattopadhyay P. P. Effect of isothermal treatments on the magnetic behavior of nanocrystalline Cu–Ni–Fe alloy prepared by mechanical alloying. Journal of Magnetism and Magnetic Materials. 2007. Vol. 309. Iss. 2. pp. 290–294. DOI: 10.1016/j.jmmm.2006.07.011 22. Slimi M., Azabou M., Escoda L., Suñol J. J., Khitouni M. Structural and microstructural properties of nanocrystalline Cu–Fe–Ni powders produced by mechanical alloying. Powder Technology. 2014. Vol. 266. pp. 262–267. DOI: 10.1016/j.powtec.2014.03.064 23. Goupil G., Bonnefont G., Idrissi H., Guay D., Roué L. Consolidation of mechanically alloyed Cu–Ni–Fe material by spark plasma sintering and evaluation as inert anode for aluminum electrolysis. Journal of Alloys and Compounds. 2013. Vol. 580. pp. 256–261. DOI: 10.1016/j.jallcom.2013.05.128 24. Loginov P., Sidorenko D., Bychkova M., Petrzhik M., Levashov E. Mechanical alloying as an effective way to achieve superior properties of Fe–Co–Ni binder alloy. Metals. 2017. Vol. 7. p. 570. DOI: 10.3390/met7120570 |