Journals →  CIS Iron and Steel Review →  2021 →  #2 →  Back

Metallurgical Equipment
ArticleName Quality improvement of manufacturing rolling mill rolls
DOI 10.17580/cisisr.2021.02.05
ArticleAuthor S. M. Bratan, S. I. Roshchupkin, A. O. Kharchenko, S. V. Belousov
ArticleAuthorData

Sevastopol State University,Sevastopol, Russia:

S. M. Bratan, Dr. Eng., Prof., Head of Dept. “Machine-building technology”
S. I. Roshchupkin, Cand. Eng., Associate Prof., Dept. “Machine-building technology”, e-mail: siroshchupkin@sevsu.ru, st.roshchupkin@yandex.ru
A. O. Kharchenko, Cand. Eng., Prof., Dept. “Machine-building technology”

 

Kuban State Agrarian University named after I. T. Trubilin, Krasnodar, Russia:
S. V. Belousov, Cand. Eng.

Abstract

At present time grinding operations for rolling mills rolls, providing the final quality parameters, are the most labour-intensive ones. It is caused first of all via their complex stochastic nature, which leads to a spread of quality indicators, lowering of reliability, productivity and efficiency of technological process. Development of the dynamic process models which can adequately describe the changes occurring in the technological system is considered as one of the ways for solving these problems. The models allowing to assess the influence of random components of the tool profile deviations as factors disturbing the grinding process dynamics are presented in the article. This assessment makes it possible to select the dynamic system parameters (such as mass, damping and stiffness) in order to ensure the maximal possible tool life, the permissible spread of the product quality parameters, as well as the maximal efficiency and productivity of the operation.

keywords Grinding wheel, rolling mill rolls, grinding process dynamics, mathematical model, roughness, profile deviation, tool life
References

1. Malkin S., Guo C. Grinding Technology: Theory and Applications of Machining with Abrasives. New York: Industrial Press, 2008. 372 р.
2. Novoselov Yu. K. Dynamics of forming the surfaces during abrasive processing. Izdatelstvo SevNTU. Sevastopol: 2012. 304 p.
3. Zhen Bing Hou, Ranga Komanduri. On the mechanics of the grinding process. Part I. Stochastic nature of the grinding process. International Journal of Machine Tools & Manufacture. 2003. Vol. 43. pp. 1579–1593.
4. Korchak S. N. Productivity of grinding process for steel components. Moscow: Mashinostroenie. 1974. 280 p.
5. Lajmert P., Sikora V., Ostrowski D. A dynamic model of cylindrical plunge grinding process for chatter phenomena investigation. MATEC Web of Conferences. 2018. Vol. 148. pp. 09004. — DOI: 10.1051/matecconf/20181480900.
6. Leonesio M., Parenti P., Cassinari A., Bianchi G., Monn M. A Time-Domain Surface Grinding Model for Dynamic Simulation. Procedia CIRP. 2012. Vol. 4. pp. 166–171. DOI: 10.1016/j.procir.2012.10.030.
7. Sidorov D., Sazonov S., Revenko D. Building a Dynamic Model of the Internal Cylindrical Grinding Process. Procedia Engineering. 2016. Vol. 150. pp. 400–405. DOI: 10.1016/j.proeng.2016.06.739.
8. Zhang N., Kirpitchenko I., Liu D. K. Dynamic model of the grinding process. Journal of Sound and Vibration. 2005. Vol. 280. pp. 425–432. DOI: 10.1016/j.jsv.2003.12.006.
9. Ahrens M., Damm J., Dagen M., Denkena B., Ortmaier T. Estimation of Dynamic Grinding Wheel Wear in Plunge Grinding. Procedia CIRP. 2017. Vol. 58. pp. 422–427. DOI: 10.1016/j.procir.2017.03.247.
10. Garitaonandia I., Fernandes M. H., Albizuri J. Dynamic model of a centerless grinding machine based on an updated FE model. International Journal of Machine Tools & Manufacture. 2008. Vol. 48. pp. 832–840. DOI: 10.1016/j.ijmachtools.2007.12.001.
11. Tawakolia T., Reinecke H., Vesali A. An Experimental Study on the Dynamic Behavior of Grinding Wheels in High Efficiency Deep Grinding. Procedia CIRP. 2012. Vol. 1. pp. 382–387. DOI: 10.1016/j.procir.2012.04.068.
12. Jung J., Kim P., Kim H., Seok J. Dynamic modeling and simulation of a nonlinear, non-autonomous grinding system considering spatially periodic waviness on workpiece surface. Simulation Modelling Practice and Theory. 2015. Vol. 57. pp. 88–99. DOI: 10.1016/j.simpat.2015.06.005.
13. Yu H., Wang J., Lu Y. Modeling and analysis of dynamic cutting points density of the grinding wheel with an abrasive phyllotactic pattern. International Journal of Advanced Manufacturing Technology. 2016. Vol. 86. pp. 1933–1943. DOI: 10.1007/s00170-015-8262-0.
14. Guo J. Surface roughness prediction by combining static and dynamic features in cylindrical traverse grinding. International Journal of Advanced Manufacturing Technology. 2014. Vol. 75. pp. 1245–1252. DOI: 10.1007/s00170-014-6189-5.
15. Arriandiaga A., Portillo E., Sanchez J. A., Cabanes I., Pombo I. A new approach for dynamic modelling of energy consumption in the grinding process using recurrent neural networks. Neural Computing & Applications. 2016. Vol. 27. pp. 1577–1592. DOI: 10.1007/s00521-015-1957-1.
16. Bratan S. M. Experimental researches of random dimensional parameters of a grinding wheel and building of analytical relationships for assessment of influence of its relief on input noise of grinding operation. Novye materialy i tekhnologii v metallurgii. Nauchnyi zhurnal ZGTU. 2000. Iss. 1. pp. 83–86.

Full content Quality improvement of manufacturing rolling mill rolls
Back