Journals →  Chernye Metally →  2021 →  #11 →  Back

Rolling and other Metal forming processes
ArticleName The effect of compaction on the stress-strain state of prestressing strands
DOI 10.17580/chm.2021.11.09
ArticleAuthor A. G. Korchunov, E. M. Medvedeva, V. A. Kharitonov, D. V. Konstantinov
ArticleAuthorData

Nosov Magnitogorsk State Technical University (Magnitogorsk, Russia):

A. G. Korchunov, Dr. Eng., Professor, Vice-Rector on International Affairs, e-mail: international@magtu.ru
E. M. Medvedeva, specialist of the Dept. of International Affairs
V. A. Kharitonov, Cand. Eng., Professor
D. V. Konstantinov, Cand. Eng., Head of the Dept. of International Affairs

Abstract

The paper presents the research results regarding the effect of compaction of highstrength prestressing strands of the 1х7 (1+6) design on changes in the stress-strain state of steel. After stranding wires in high-strength prestressing strands with strength of 1860 MPa, 12.5 mm in diameter, the strand should be compacted at a suggested degree of 6 %. This reasonable schedule of compaction contributes to a lower level of stranding stresses, integral strand geometry and residual stresses within the ranges compatible with residual stresses of stabilized prestressing strands. The paper includes the studies on mechanical properties of test specimens of compacted prestressing strands. A computer model of stranding and subsequent compaction of strands is used to factor in residual stresses formed at previous operations of strand production.

keywords Prestressing strand, outer wire, stress-strain state, residual stresses, compaction, stranding, computer simulation
References

1. Kharitonov V. А., Ivantsov А. B., Lapteva Т. А. Application of calibrating plastic reduction in the production of steel ropes: monograph. Magnitogors: Izdatelstvo Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta imeni G. I. Nosova, 2016. 102 p.
2. Glushko M. F., Malinovskiy V. A. Method of making wire rope. Certificate of Authorship USSR, No. 867976. Published: 30.09.81. Bulletin No. 36.
3. Kharitonov V. A., Zaretskiy L. M., Shiryaev O. P., Kanaev D. P. Method of making reinforcement rope. Patent RF, No. 2705668. Applied: 11.12.2018. Published: 11.11.2019. Bulletin No. 32.
4. Atienza J. M., Ruiz-Hervias J., Martinez-Perez M. L., Mompean F. J., Garcia-Hernandez M., Elices M. Residual stresses in cold drawn pearlitic rods. Scripta Materialia. 2005. Vol. 52. pp. 1223–1228.
5. Atienza J. M., Elices M., Ruiz-Hervias J., Caballero L., Valiente A. Residual Stresses and Durability in Cold Drawn Eutectoid Steel Wires. Metals and materials international. 2007. Vol. 13. Iss. 2. pp. 139–143.
6. Kharitonov V. А., Usanov М. Yu. Effect of the reduction scheme on the stress-strain state of a round wire when drawing in roller dies. Chernaya metallurgiya. Byulleten nauchnotekhnicheskoy i ekonomicheskoy informatsii. 2020. Vol. 76. No. 9. pp. 945–955.
7. GOST R 53772–2010. Reinforced steel low-relaxation 7-wire strands. Introduced: 01.01.2011.
8. Elices M. Influence of residual stresses in the performance of cold-drawn pearlitic wires. Journal of materials science. 2004. Vol. 39. pp. 3889–3899.
9. Dasheng Wei, Xuegang Min, Xianjun Hu, Zonghan Xie, Feng Fang. Microstructure and mechanical properties of cold drawn pearlitic steel wires: Effects of drawing-induced heating. Materials Science & Engineering: A. 2020. Vol. 784. p. 7.
10. Caballero L., Atienza J. M., Elices M. Thermo-mechanical treatment effects on stress relaxation and hydrogen embrittlement of cold-drawn eutectoid steels. Metals and materials international. 2011. Vol. 17, Iss. 6. pp. 899–910.
11. Atienza J. M., Ruiz-Hervias J., Elices M. The role of residual stresses in the performance and durability of prestressing steel wires. Experimental Mechanics. 2012. Vol. 52. pp. 881–893.
12. Lichu Zhou, Feng Fang, Jian Zhou, Zonghan Xie, Jianqing Jiang. Strain-induced coarsening of ferrite lamella in cold drawn pearlitic steel wire. Materials Science & Engineering: A. 2020. Vol. 771. p. 7.
13. Konstantinov D. V., Korchunov A. G., Zaitseva M. V., Shiryaev O. P., Emaleeva D. G. Macro- and micromechanics of pearlitic-steel deformation in multistage wire production. Steel in Translation. 2018. Vol. 48. pp. 458–462.
14. GOST 12004–81. Reinforcing-bar steel. Tensile test methods. Introduced: 01.07.1983.
15. Korchunov A. G., Medvedeva E. M., Ivekeeva P. V., Konstantinov D. V. FEM study of internal stresses evolution in prestressing strands. CIS Iron and Steel Review. 2020. Vol. 20. pp. 21–24.
16. Korchunov A. G., Polyakova M. A., Konstantinov D. V., Dabalá M. Mechanical properties of prestressing strands and how they tend to change under thermo-mechanical treatment. CIS Iron and Steel Review. 2019. Vol. 18. pp. 14–19.
17. Trusov V. А., Kaputkina L. М. et. al. Research and development of the technology for manufacturing a new type of product - steel ropes with plastically compressed strands at JSC Severstal – metiz. Proizvodstvo prokata. 2011. No. 10. pp. 33–37.
18. Trusov V. А., Kaputkina L. М. et. al. The effect of plastic deformation when drawing wire strands in a roller stand on mechanical properties of steel ropes. Proizvodstvo prokata. 2012. No. 1. pp. 41–44.

Language of full-text russian
Full content Buy
Back