Journals →  Chernye Metally →  2021 →  #8 →  Back

Steel making
ArticleName Promising directions of using aluminum for steel deoxidation
DOI 10.17580/chm.2021.08.02
ArticleAuthor Yu. A. Bublikov, A. V. Ivchenko, O. V. Zuev, A. V. Andryushkin

National Metallurgical Academy of Ukraine (Dnepr, Ukraine):

Yu. A. Bublikov, Cand. Eng., Associate Prof., e-mail:
A. V. Ivchenko, Cand. Eng., Senior Researcher


Baku Non Ferrous and Foundry Company Ltd. (Sumgait, Azerbaidzhan):
O. V. Zuev, Director


NPP Vasilkovskiy Ore Reduction Plant (Dnepr, Ukraine):
A. V. Andryushkin, Chief Technologist


The existing methods of deoxidation and alloying of steel with aluminum are considered and analyzed. The most promising methods of introducing aluminum into the iron-carbon melt are proposed, which make it possible to significantly increase its effective utilization factor. Based on the analysis of data on improving the shape and design of an aluminum ingot by using weighting agents made of cast iron and steel in various versions, a technology for production of a bimetallic aluminum-iron ingot with a displaced center of gravity has been selected and described, which reduces the contact surface of interaction with atmospheric oxygen and thereby increase assimilation of aluminum due to the implementation of the “self-righting doll” effect. On the basis of industrial testing under the conditions of Dneprostal Metallurgical Plant with preliminary deoxidation of the melt at the tapping from an electric arc furnace into the ladle, attention is focused on advantages of using fractionated complex alloys of the Fe - Al - Si system instead of the secondary pig aluminum with a replacement ratio of 1: 1.25, which enables to increase the degree of aluminum use by more than 40%. The mechanisms of the process of spontaneous destruction of alloys of the Fe - Si system are described, by analogy with which the regions of the ξ-phase existence in the ternary Fe - Al - Si system are identified and, taking into account the theory of embrittlement of intermetallics, a technological solution is proposed for stabilizing ferrosilicoaluminum from spontaneous disintegration during long-term storage in any weather conditions and a wide range of concentrations by modifying the alloy with an alloy based on rare non-ferrous metals. For these purposes, under the conditions of SPP Vasilkovsky Ore Reduction Plant Ltd., a pilot batch of a complex aluminum-silicon alloy on an iron base (~ 30% Al, ~ 15% Si, bal. - Fe) was melted in an induction furnace with the use of the modifying additive.

keywords Secondary aluminum, deoxidation, bimetallic ingots, complex alloys, ferrosilicoaluminum, self-decomposition, modification

1. Gasik М. I., Emlin B. I. Electrometallurgy of ferroalloys: textbook for universities. Kiev: Vishcha shkola. Golovnoe izdatelstvo, 1983. 376 p.
2. Elyutin V. P., Pavlov Yu. А., Levin B. Е., Alekseev Е. М. Ferroalloy production: tutorial. Moscow: Metallurgizdat, 1957. 436 p.
3. Shchedrovitskiy Ya. S. Complex silicon ferroalloys. Moscow: Metallurgiya. 1966. 175 p.
4. Khan B. Kh. Deoxidation, degassing and alloying of steel. Moscow: Metallurgiya. 1960. 237 p.
5. Ascik J. J. Deoxidation and degasification practice for basic electric furnace alloy steels. Journal of the minerals, metals and materials society. 1953. No. 8. pp. 986–990.
6. Chipman D., Kherti S. Kh., Larsen V. М. Open-hearth steel production (main process). Moscow: Metallurgizdat. 1947. 728 p.
7. GOST 295–98. Aluminium for deoxidation, manufacture of ferroalloys and aluminothermy. Introduced: 01.07.2001.
8. Sheshukov О. Yu. The use of ferroaluminum for steel deoxidation. Stal. 2004. No. 9. pp. 26–27.
9. Yi Han, Chunyan Ban, Haitao Zhang, Hiromi Nagaumi, Qixian Ba, Jianzhong Cui. Investigations on the solidification behavior of Al-Fe-Si alloy in an alternating magnetic field. Materials Transactions. 2006. Vol. 47. No. 8. pp. 2092–2098.
10. Mukhambetgaliev Е. К., Roshchin V. Е., Baysanov S. O. Analytical expressions of the Fe-Si-Al-Mn metal system and aluminosilicomanganese phase composition. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya. 2018. Vol. 61. No. 7. pp. 564–571.
11. Baisanov S. O., Baisanov A. S., Shabanov E. Zh., Mukhambetkaliyev E. K. Development of smelting technology of complex ferroalloy with the use of high-ash coals. Theoretical and practical conference with international participation and school for young scientists. 2019. pp. 46–53.
12. Issagulov A. Z., Chekimbayev A. F., Makayev T. S., Babenko A. A. Studying the Fe-Al-Si system in relation to ferrosilicon-aluminum alloy crystallization. Journal Metalalurgia. METABK. 2020. No. 59. Iss. 1. pp. 81–84.
13. Gasik M., Dashevskiy V., Bizhanov A. Ferroalloys: theory and practice. Topics in mining. Metallurgy and Materials Engineering. 2020. 531 p.
14. Sheshukov O. Yu., Zhuchkov V. I., Leontyev L. I., Marshun L. A. Ferroaluminum alloy of lump-type for deoxidation of steel. Patent RF, No. 2310006. Published 10.11.2007, Bulleten No. 31.
15. Arikh S. G., Semenchenko P. M., Parenchuk I. V., Belov B. F., Trotsan A. I., Firstov S. O., Parenchuk V. V., Shepel V. D., Sinelnikov V. V., Vatletsov O. V. Secondary aluminum alloy for complex deoxidation of steel – Siferal. Patent UA, No.32067. Applied: 19.10.2005. Published: 12.05.2008. Bulleten No. 9.
16. Makeev Т. S. Research and technology of ferrosilicon smelting from raw materials of the Kuu-Chekinsky coal field: Dissertation … of Doctor of Philosophy. Karaganda, 2020.
17. Mashinskiy V. M., Komshukov V. P., Sokolov V. V., Kazmin A. I., Perekhodov V. G., Yanak B. E. Patent RF, No. 57745. Ingot for deoxidation of steel by aluminum. Published: 27.10.2006. Bulleten No. 30.
18. Serov O. I., Yaroslavtsev Yu. G. Patent UA, No. 59212. Ingot for deoxidation of steel by aluminum. Published: 15.08.2003. Bulleten No. 8.
19. Anashkin N. S., Khitrykh S. N., Nekrasov A. P., Kozyrev N. A., Mamatov Yu. M. Pig for deoxidation of steel with aluminum. Patent RF, No. 2152440. Published: 10.07.2000. Bulleten No. 19.
20. Nikulin A. Yu., Rekhviashvili T. A., Ishimov V. I., Nogtev V. P., Bakhcheev N. F., Korotkikh V. F., Agaryshev A. I., Kritsevets M. I., Shakirov N. N. Method for reducing steel with aluminium and reducer pig. Patent USSR, No. 1089147. Published: 30.04.1984.Bulleten No. 16.
21. Mukhin M. A., Bublikov Yu. A., Ivchenko A. V. Bimetallic pig for steel deoxidation. Patent UA, No. 83414. Publidhed: 10.09.2013. Bulleten No. 17.
22. Isagulov А. Z., Makaev Т. S., Kwon Sv. S., Kulikov V. Yu., Shcherbakov Е. P. Study of the influence of ferrosilicoaluminum steel treatment mode on its metallurgical properties. Vestnik IGTU. 2020. No. 24 (1). pp. 208–219.
23. Kataev V. V., Sheshukov О. Yu., Ermakova V. P., Smirnova V. G., Konashkov V. V., Marshuk L. А. Development of composition, production technologies and research of cast heat-resistant Fe-Al alloy. Novosti materialovedeniya. Nauka i tekhnika. 2014. No. 2. pp. 1–11.
24. GOST 1415–93. Ferrosilicium. Specification and conditions of delivery. Introduced: 01.01.1997.
25. Povolotskiy V. D., Komissarov Т. А., Minaev V. М. Study of causes for ferrosilicon disintegration. Izvestiya vuzov. Chernaya metallurgiya. 1987. No. 8. pp. 31–35.
26. Magnusson Th., Sinfusson Th., Helgason O. Phase stability in silicon rich ferrosilicium. 8th International ferroaloys congress proceedings. China Science, Technology Press. 1998. pp. 110–115.
27. Strukov I. N., Geld P. V. Influence of loboite transformation on ferrosilicon resistance. Fizika metallov i metallovedenie. 1956. Iss. 3. pp. 564–565.
28. Zhunusov А. К., Tolymbekova L. B., Bakirov А. G., Nurgaliev А. К., Nurgaliev М. N. Analysis of iron-aluminum alloys production. Nauka i tekhnika Kazakhstana. 2016. No. 3-4. pp. 62–66.
29. Nesterenko Т. М., Nesterenko О. М., Kolobov G. О., Gritsay V. P. Production of aluminum alloys from ore and secondary raw materials: textbook. Kiev: Vishcha shkola, 2007. 207 p.
30. Chuistov К. V. Ordering and decomposition in supersaturated solid solutions. Kiev: RIO IMF, 1999. 215 p.

Language of full-text russian
Full content Buy