Название |
Research on the reduction of iron oxide from red mud pellets using coke |
Информация об авторе |
St. Petersburg Mining University (St. Petersburg, Russia).
Khalifa A. A., Postgraduate Student Bazhin V. Yu., Head of Chair, Doctor of Engineering Sciences, Professor, bazhin_vyu@pers.spmi.ru Ustinova Ya. V., Associate Professor, Candidate of Engineering Sciences, Kuskova_YaV@pers.spmi.ru
Central Metallurgical Research and Development Institute (Cairo, Egypt): Shalabi M. E. H., Head of Laboratory, Candidate of Engineering Sciences |
Библиографический список |
1. Pasechnik L. A., Medyankina I. S., Skachkov V. M., Sabirzyanov N. A., Pyagay I. N., Yatsenko S. P. Extraction of zirconium from red mud of alumina production. Fluorine Notes. 2018. Iss. 3. URL: http://ru.notes.fluorine1.ru/public/2018/3_2018/article_3.html (accessed: 29.07.2021). 2. Pyagay I. N. Extraction of scandium and other metals from red mud of alumina production with the absorption of toxic gases in sintering furnaces: diss. for the degree of Doctor of Engineering Sciences. St. Petersburg, 2016. 318 p. 3. Zinoveev D. V., Grudinskii P. I., Dyubanov V. G., Kovalenko L. V., Leont'ev L. I. Global recycling experience of red mud – A review. Part 1: Pyrometallurgical methods. Izvestiya Vysshikh Uchebnykh Zavedeniy. Chernaya Metallurgiya. 2018. Vol. 61, No. 11. pp. 843–858. 4. Piirainen V. Y., Boeva A. A., Nikitina T. Y. Application of new materials for red mud immobilization. Key Engineering Materials. 2020. Vol. 854. pp. 182–187. 5. Besedin А. А., Utkov V. А., Brichkin V. N., Sizyakov V. М. Red mud sintering. Obogashchenie Rud. 2014. No. 2. pp. 28–31. 6. Pyagay I. N., Kremcheev E. A., Pasechnik L. A., Yatsenko S. P. Carbonization processing of bauxite residue as an alternative rare metal recovery process. Tsvetnye Metally. 2020. No. 10. pp. 56–63. DOI: 10.17580/tsm.2020.10.08. 7. Kashcheev I. D., Zemlyanoy K. G., Doronin A. V., Kozlovskikh E. Yu. New possibilities of the acidic method for producing aluminum oxide. Novye Ogneupory. 2014. No. 4. pp. 6–12. 8. Khalifa A. A., Utkov V. A., Brichkin V. N. Red mud effect on dicalcium silicate polymorphism and sinter selfdestruction prevention. Vestnik Irkutskogo Gosudarstvennogo Tekhnicheskogo Universiteta. 2020. Vol. 24, No. 1. pp. 231–240. 9. Ashok P., Sureshkumar M. P. Experimental studies on concrete utilising red mud as a partial replacement of cement with hydrated lime. Journal of Mechanical and Civil Engineering (IOSR-JMCE). 2014. Vol. 6. 10 p. 10. Vegman E. F. Ores and concentrates pelletizing. Moscow: Metallurgiya, 1984. 256 p. 11. Trushko V. L., Dashko R. E., Kuskov V. B., Klyamko A. S. Technology of «cold» briquetting of rich ores of the Jakovlevsky deposit. Zapiski Gornogo Instituta. 2011. Vol. 190. pp. 133–137. 12. Sizyakov V. M., Litvinova T. E., Brichkin V. N., Fedorov A. T. Modern physicochemical equilibrium description in Na2O–Al2O3–H2O system and its analogues. Zapiski Gornogo Instituta. 2019. Vol. 237. pp. 298–306. 13. Lancellotti I., Barbieri L., Leonelli C. Use of alkaliactivated concrete binders for toxic waste immobilization. Handbook of alkali-activated cements, mortars and concretes. Elsevier Ltd., 2015. pp. 539–554. 14. Dodoo-Arhin D., Nuamah R. A., Agyei-Tuffour B., Obada D. O., Yaya A. Awaso bauxite red mud-cement based composites: Characterization for pavement applications. Case Studies in Construction Materials. 2017. Vol. 7. pp. 45–55. 15. Liu X., Zhang N. Utilization of red mud in cement production: A review. Waste Management. 2011. Vol. 29, No. 10. pp. 1053–1063. 16. Newson T., Dyer T., Adam C., Sharp S. Effect of structure on the geotechnical properties of bauxite residue. Journal of Geotechnical and Geoenvironmental Engineering. 2006. Vol. 132, No. 2. pp. 143–151. 17. Romano R. C. O., Bernardo H. M., Maciel M. H., Pileggi R. G., Cincotto M. A. Hydration of Portland cement with red mud as mineral addition. Journal of Thermal Analysis and Calorimetry. 2017. Vol. 131. pp. 2477–2490. 18. Paramguru R. K., Rath P. C., Misra V. N. Trends in red mud utilization – A review. Mineral Processing and Extractive Metallurgy Review. 2004. Vol. 26, Iss. 1. pp. 1–29. 19. Rai S., Wasewar K., Mukhopadhyay J., Yoo C., Uslu H. Neutralization and utilization of red mud for its better waste management. Archives of Environmental Science. 2012. Vol. 6. pp. 13–33. 20. Bhoi B., Rajput P., Mishra C. R. Production of green direct reduced iron (DRI) from red mud of Indian origin: A novel concept. Proc. of 35th International ICSOBA conference, 2–5 October 2017. Hamburg, Germany. pp. 565–574. 21. Cong Y. L., He Z. J., Zhang J. H., Pang Q. H. Experimental study on iron recovery by microwave carbon heat reduction-magnetic separation from red mud. Metalurgija. 2018. Vol. 57, No. 1–2. pp. 75–78. 22. Mombelli D., Barella S., Gruttadauria A., Mapelli C. Iron recovery from bauxite tailings red mud by thermal reduction with blast furnace sludge. Applied Sciences. 2019. Vol. 9, No. 22. pp. 1–23. 23. Forsmo S. P. E., Apelqvist A. J., Björkman B. M. T., Samskog P. Binding mechanisms in wet iron ore green pellets with a bentonite binder. Powder Technology. 2006. Vol. 169. pp. 147–158. 24. Litvinenko V. The role of hydrocarbons in the global energy agenda: The focus on liquefied natural gas. Resources. 2020. Vol. 9, No. 5. pp. 59–81. 25. Litvinenko V. S. Digital economy as a factor in the technological development of the mineral sector. Natural Resources Research. 2020. Vol. 29. pp. 1521–1541. |