Журналы →  Obogashchenie Rud →  2021 →  №4 →  Назад

ANALYTICAL METHODS
Название Leaching kinetics for thermally activated bauxite
DOI 10.17580/or.2021.04.06
Автор Dubovikov О. A., Sundurov A. V.
Информация об авторе

St. Petersburg Mining University (St. Petersburg, Russia):

Dubovikov O. A., Professor, Doctor of Engineering Sciences, dubovikov_OA@pers.spmi.ru
Sundurov A. V., Postgraduate Student, s185092@stud.spmi.ru

Реферат

Increased aluminum and, consequently, alumina outputs deplete the high-grade aluminum-containing bauxite resources. The silicon module is the main quality characteristic of bauxite, defining the recovery of aluminum oxide from the rock. The use of thermochemical conditioning of low-grade mineral raw materials is proposed in order to obtain bauxite concentrates with high silicon modules by reducing the amount of silicon dioxide in the concentrate. This will reduce the load on the energy-intensive sintering line and expand the applications of the less expensive Bayer hydrochemical method for processing bauxite raw materials. Roasting of raw materials, one of the stages for the technology proposed, is cheaper than sintering. Its purpose is to improve the liberation of silicon-containing bauxite minerals and ensure the subsequent transfer of the maximum amount of silicon dioxide into the solution at the desiliconization stage. For this purpose, the recovery of aluminum and silicon oxides into an alkaline solution was studied for the desiliconization stage at varying roasting temperatures. In order to minimize the sodium  hydroaluminosilicate generating reaction in the desiliconization process, a high liquid/solid ratio of over 100 : 1 was selected. This is an inadequate ratio for process operations, which may, however, be used to confirm the decomposition mechanism for silicon-containing minerals during thermal activation of bauxite from the Northern Onega deposits.

Ключевые слова Bauxite, leaching, silicon module, bauxite concentrate, thermal activation, roasting
Библиографический список

1. Anisonyan K. G., Kopyev D. Yu., Olyunina T. V., Sadykhov G. B. Influence of Na2CO3 and CaCO3 additions on the aluminate slag formation during a single-stage reducing roasting of red mud. Non-ferrous Metals. 2019. No. 1. pp. 17–21. DOI: 10.17580/nfm.2019.01.03
2. Lebedev A. B., Utkov V. A., Gutema E. M. Interaction of molten slag with solid phase of red sludge. Izvestiya Vysshikh Uchebnykh Zavedeniу. Chernaya Metallurgiya. 2019. Vol. 62, Iss. 4. pp. 276–282.
3. Smith P. The processing of high silica bauxites — Review of existing and potential processes. Hydrometallurgy. 2009. Vol. 98. pp. 162–176.
4. Loginova I. V., Kyrchikov A. V., Penyugalova N. P. Technology of alumina production. Ekaterinburg: UFU, 2015. 336 p.
5. Sizyakov V. M., Kononenko E. S., Makarov S. N. Technology super deep desiliconization with fractional dose hydrocarboaluminate of calcium. Zapiski Gornogo Instituta. 2013. Vol. 202. pp. 31–34.
6. Li W. X. Alumina production theory and technology. Changsha: Central South University, 2010. 411 p.
7. Wang Q., Sheng X., He L., Shan Y. Improving biodesilication of a high silica bauxite by two highly effective silica-solubilizing bacteria. Minerals Engineering. 2018. Vol. 128. pp. 179–186.
8. Wu Y., Li M., Zhu F., Hartley W., Liao J., An W., Xue S., Jiang J. Variation on leaching behavior of caustic compounds in bauxite residue during dealkalization process. Journal of Environmental Sciences. 2020. Vol. 92. pp. 141–150.
9. Dubovikov O. A., Brichkin V. N., Ris A. D., Sundurov A. V. Thermochemical activation of hydrated aluminosilicates and its importance for alumina production. Non-ferrous Мetals. 2018. No. 2. pp. 10–15. DOI: 10.17580/nfm.2018.02.02.
10. Wu Y., Pan X., Han Y., Yu H. Dissolution kinetics and removal mechanism of kaolinite in diasporic bauxite in alkali solution at atmospheric pressure. Transactions of Nonferrous Metals Society of China. 2019. Vol. 29. pp. 2627–2637.
11. Yang H., Pan X., Yu H., Tu G., Sun J. Dissolution kinetics and mechanism of gibbsitic bauxite and pure gibbsite in sodium hydroxide solution under atmospheric pressure. Transactions of Nonferrous Metals Society of China. 2015. Vol. 25. pp. 4151–4159.
12. Boduen A. Ya., Fokina S. B., Petrov G. V., Andreev Yu. V. Ammonia autoclave technology for the processing of low-grade concentrates generated in flotation concentration of cupriferous sandstones. Obogashchenie Rud. 2019. No. 2. pp. 33–38. DOI: 10.17580/or.2019.02.06.
13. Trushko V. L., Utkov V. A., Bazhin V. Y. Topicality and possibilities for complete processing of red mud of aluminous production. Zapiski Gornogo Instituta. 2017. Vol. 227. pp. 547–553.
14. Pevzner I. Z., Makarov N. A. Desilinization of aluminate solutions. Moscow: Metallurgiya, 1974. 112 p.
15. Mezenin A. O., Tasina Т. I., Ierusalimtsev V. A. Overview and comparative assessment of promising technologies for processing of nepheline raw materials with a view to produce alumina. Obogashchenie Rud. 2016. No. 3. pp. 33–42. DOI: 10.17580/or.2016.03.03.
16. Shi L., Ruan S., Li J., Gerson A. Desilication of low alumina to caustic liquor seeded with sodalite or cancrinite. Hydrometallurgy. 2017. Vol. 170. pp. 5–15.
17. Cheremisina O. V., Volkova O. A., Litvinova T. E. Influence of anion nature on acid leaching of silicate minerals and solvent extraction of rare and rare-earth elements. Chemie der Erde. 2020. Vol. 80, Iss. 3. Article 125507. 8 p. DOI: 10.1016/j.chemer.2019.04.003.
18. Sizyakov V. M. Chemical and technological mechanisms of a alkaline aluminum silicates sintering and a hydrochemical sinter processing. Zapiski Gornogo Instituta. 2016. Vol. 217. pp. 102–112.

Language of full-text русский
Полный текст статьи Получить
Назад