References |
1. Global Mercury Assessment. United Nations Environment Programme (UNEP) Chemicals and Health Branch. Geneva. 2002. 2. Pacyna E. G., Pacyna J. M., Steenhuisen F., Wilson S. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment. 2006. Vol. 40 (22). pp. 4048–4063. 3. Pirrone N., Wichmann-Fiebig M., Ahrens R., Pacyna J. M., Borowiak A. Ambient Air Pollution by Mercury (Hg). Position Paper. European Communities. 2002. 4. Pirrone N., Cinnirella S., Feng X., Finkelman R. B., Friedli H. R., Leaner J., Mason R., Mukherjee A. B., Stracher G. B., Streets D. G., Telmer K. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics. 2010. No. 10. pp. 5951–5964. 5. National emissions reported to the Convention on Long-range Transboundary Air Pollution (LRTAP Convention). European Economic Area (EEA). 2020. https://www.eea.europa.eu/dataand-maps/data/national-emissions-reported-to-the-convention-on-long-range-transboundary-air-pollution-lrtap-convention-13. Access: 2020-06-29. 6. European Pollutant Release and Transfer Register (E-PRTR). 2020. https://prtr.eea.europa.eu/. Access: 2020-06-19. 7. Poland’s informative inventory report. Submission under the UN ECE Convention On Long-rate Transboundary Air Pollution and the Directive (EU) 2016/2284. 2015–2019. The National Centre for Emissions Management (NCEM). Warsaw. 2020. 8. Steel Statistical Yearbook. 2009–2019. World Steel Association (WSA). Brussels. 2020. 9. Global Mercury Assessment 2018. United Nations Environment Programme (UNEP) Chemicals and Health Branch. Geneva. 2019. 10. Fukuda N., Takaoka M., Doumoto S., Oshita K., Morisawa S., Mizuno T. Mercury emission and behavior in primary ferrous metal production. Atmospheric Environment. 2011. Vol. 45. pp. 3685–3691. 11. Xu W., Shao M., Yang Y., Liu R., Wu Y., Zhu T. Mercury emission from sintering process in the iron and steel industry of China. Fuel Processing Technology. 2017. Vol. 159. pp. 340–344. DOI: 10.1016/j.fuproc.2017.01.033 12. Yue T., Wang F., Han B. J., Zuo P. L., Zhang F. Analysis on Mercury Emission and Control Technology of Typical Industries in China. Applied Mechanics and Materials. 2013. Vol. 295–298. pp. 859–871. 13. Trinkel V., Mallow O., Thaler C., Schenk J., Rechberger H., Fellner J. Behavior of Chromium, Nickel, Lead, Zinc, Cadmium, and Mercury in the Blast Furnace – A Critical Review of Literature Data and Plant Investigations. Industrial & Engineering Chemistry Research. 2015. Vol. 54 (47). pp. 11759–11771. 14. Wang F., Wang S., Zhang L., Yang H., Gao W., Wu Q., Hao J. Mercury mass flow in iron and steel production process and its implications for mercury emission control. Journal of Environmental Sciences. 2016. Vol. 43. pp. 293–301. 15. Wu Q., Gao W., Wang S., Hao J. Updated atmospheric speciated mercury emissions from iron and steel production in China during 2000–2015. Atmospheric Chemistry and Physics. 2017. Vol. 17. pp. 10423–10433. 16. Carpenter A. M. Use of PCI in blast furnace. IEA Clean Coal Centre. September 2006. 17. Matsui Y., Shibata K., Yoshida Y., Ono R. The Principle of Blast Furnace Operational Technology and Centralized Gas Flow by Center Coke Charging. Kobelco Technology Review. 2005. No. 25. pp. 12–20. 18. Burmistrz P., Kogut K., Marczak M., Dziok T., Górecki J. Mercury in Polish Coking Bituminous Coals. Energy & Fuels. 2018. Vol. 32. pp. 5677–5683. 19. Konieczy ski J., Zajusz-Zubek E., Jabo ska M. The Release of Trace Elements in the Process of Coal Coking. The Scientific World Journal. 2012. pp. 294927. 20. Burmistrz P., Kogut K., Marczak M., Zwodziak J. Lignites and subbituminous coals combustion in Polish power plants as a source of anthropogenic mercury emission. Fuel Processing Technology. 2016. Vol. 152. pp. 250–258. 21. Das B., Prakash S., Reddy P. S. R., Misra V. N. An overview of utilization of slag and sludge from steel industries. Resources, Conservation and Recycling. 2007. Vol. 50 (1). pp. 40–57. 22. Wei Z., Wu G., Su R., Li C., Liang P. Mobility and contamination assessment of mercury in coal fly ash, atmospheric deposition, and soil collected from Tianjin, China. Environmental Toxicology and Chemistry. 2011. Vol. 30 (9). pp. 1997–2003. 23. Földi C., Dohrmann R., Mansfeld T. Mercury in dumped blast furnace sludge. Chemosphere. 2014. Vol. 99. pp. 248–253. 24. Földi C., Adrée C. A., Mansfeldt T. Sequential extraction of inorganic mercury in dumped blast furnace sludge. Environmental Science and Pollution Research. 2015. Vol. 22. pp. 15755–15762. 25. Technical Background Report for the Global Mercury Assessment 2013. United Nations Environmental Programme (UNEP) Division of Technology, Industry and Economics, Chemicals Branch. Geneva. 2013. 26. Sridhar S., McLean A., Guthrie R. Treatise on Process Metallurgy. Industrial Processes, Part A. Elsevier. 2014. 27. Zhang W., Zhang J., Xue Z., Zou Z., Qi Y. Unsteady Analyses of Top Gas Recycling Oxygen Blast Furnaces. ISIJ International, Advance Publications by J-STAGE. 2016. Vol. 90. pp. 1–10. 28. Sun W., Wang Q., Zhou Y., Wu J. Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives. Applied Energy. 2020. Vol. 268. pp. 114946. DOI: 10.1016/j.apenergy.2020.114946 29. ISO 3082. Iron ores. Sampling and sample preparation procedure. International Organization for Standardization. Geneva. Switzerland. 2017. 30. ISO 18283. Hard coal and coke. Manual Sampling. International Organization for Standardization. Geneva. Switzerland. 2006. 31. ISO 13909-4. Hard coal and coke. Mechanical sampling. Part 4. Coal–Preparation of test samples. International Organization for Standardization. Geneva. Switzerland. 2001. 32. ISO 17246. Coal Proximate analysis. International Organization for Standardization. Geneva. Switzerland. 2010. 33. ISO 17247. Coal Ultimate analysis. International Organization for Standardization. Geneva. Switzerland. 2013. 34. ISO 2596-4. Iron ores. Determination of hydrogenic moisture in analytical samples. Gravimetric, Karl Fischer and mass-loss methods. International Organization for Standardization. Geneva. Switzerland. 2006. 35. ISO 3087. Iron ores. Determination of the moisture content of a lot. International Organization for Standardization. Geneva. Switzerland. 2011. 36. Górecki J., Burmistrz P., Trzaskowska M., Sotys B., Goa J. Method development for total mercury determination in coke oven gas combining a trap sampling method with CVAAS detection. Talanta. 2018. 188. 293–298. 37. Burmistrz P., Kogut K. Mercury in Bituminous Coal used in Polish Power Plants. Archives of Mining Sciences. 2016. Vol. 61 (3). pp. 473–488. 38. Kadirvelu K., Kavipriya M., Karthika C., Vennilamani N., Pattabhi S. Mercury (II) adsorption by activated carbon made from sago waste. Carbon. 2004. Vol. 42. pp. 745–752. 39. Bhardwaj R., Chen X., Vidic R. D. Impact of Fly Ash Composition on Mercury Speciation in Simulated Flue Gas. Journal of the Air & Waste Management Association. 2009. Vol. 59 (11). pp. 1331–1338. 40. Clack H. L. Modeling Mercury Capture within ESPs: Continuing Development and Validation. Electrostatic Precipitators. Springer. Berlin. 2009. pp. 37–44. 41. Veselý V., Szeliga Z., Vávrová Z., Cech B., Regucki P., Krzyzynska R. Characteristic of Mercury on the Surface of Ash Originating from Electrostatic Precipitators of Lignite and Bituminous Coalfired Power Plants. Environment Protection Engineering. 2019. Vol. 45 (4). pp. 45–59. 42. Remus R., Aguado Monsonet M. A., Roudier S., Sancho L. D. Best Available Techniques (BAT) Reference Document for Iron and Steel Production. Industrial Emissions Directive 2010/75/EU. Integrated Pollution Prevention and Control. European Commission JRC Reference Report. BREF. 2013. |