Journals →  CIS Iron and Steel Review →  2021 →  #1 →  Back

Metal Science and Metallography
ArticleName Study of the effect of nanomodifiers from silicon production wastes on morphological form of gray cast iron graphites
DOI 10.17580/cisisr.2021.01.11
ArticleAuthor A. E. Balanovskiy, A. I. Karlina, A. D. Kolosov, Yu. I. Karlina
ArticleAuthorData

Irkutsk National Research Technical University (Irkutsk, Russia):
A. E. Balanovskiy, Cand. Eng., Associate Prof.
A. D. Kolosov, Engineer
Yu. I. Karlina, Researcher, e-mail: karlinat@mail.ru

 

Irkutsk National Research Technical University (Irkutsk, Russia)1 ; Moscow State University of Civil Engineering (Moscow, Russia)2:

A. I. Karlina1,2 , Cand. Eng., Researcher

Abstract

The influence of modifiers obtained from silicon production waste on the morphological form of graphite in gray cast iron was evaluated. Experimental melts were performed to study the effect of nanomodifiers. Series of ten samples were obtained, in each of which one sample was a control sample without the use of an experimental modifier. The other nine samples of each series were obtained using the studied additives. Cast iron was smelted in an induction furnace of the IST-0.6/0.4 brand, with a capacity of 500 kg. The conducted researches included: determination of the chemical composition of cast iron; determination of the hardness of samples using the Brinell method; tensile testing of samples; study of the macro- and microstructure of gray cast iron. The graphite phase in the modified cast iron was obtained using our proposed modifiers and is represented by vermicular graphite. The mechanisms of graphite formation using the suggested modifiers are considered.

keywords Modifiers, gray cast iron, nanostructures, silicon dioxide, morphology, oxides, crystallization, lamellar, compacted, vermicular graphite
References

1. Double D. D., Hellawell A. The nucleation and growth of graphite—the modification of cast iron. Acta Metallurgica et Materialia. 1995. June. Vol. 4. Iss. 6. pp. 2435–2442.
2. Amini S., Garay J., Liu G., Balandin A.A., Abbaschian R. Growth of large-area graphene films from metal–carbon melts. J. Appl. Phys. 2010. No. 108 (9). pp. 094321–94327.
3. Amini S., Kalaantari H., Garay J., Balandin A., Abbaschian R. Growth of graphene and graphite nanocrystals from a molten phase. J. Mater. Sci. 2011. No. 46 (19). pp. 6255–6263.
4. Stefanescu D. M., Alonso G., Larrañaga P., De la Fuente E., Suárez R. On the crystallization of graphite from liquid Iron-Carbon-Silicon melts. Acta Materialia. 2016. No 107. pp. 102–126.
5. Fang K. M., Wang G. C., Wang X., Huang L., Deng G. D. The microstructure and metamorphic regularity of graphite in cast iron. Science and Processing of Cast Iron VIII. Tsinghua Univ. Press, Beijing, China. 2006. pp. 181–187.
6. Theuwissen K., Lacaze J., Laffont L. Structure of graphite precipitates in cast iron. Carbon. 2016. Vol. 96. pp. 1120–1128. DOI: 10.1016/j.carbon.2015.10.066
7. Amini S., Abbaschian R. Nucleation and growth kinetics of graphene layers from a molten phase. Carbon. 2013. Vol. 51. pp. 110–123.
8. ASTM A247-67 (1998) e1. Standard Test Method for Evaluating the Microstructure of Graphite in Iron Castings. ASTM International. West Conshohocken, PA, 1967, www.astm.org.
9. DIN EN ISO 945-1-2019. Microstructure of cast irons - Part 1: Graphite classification by visual analysis (ISO 945-1:2019); German version EN ISO 945-1:2019.
10. GOST 3443-87. Cast iron castings with graphite of different form. Methods of structure determination. International standard. Developed and introduced by the Ministry of power engineering machine-building at 01.07.1988. New edition February 2003. Moscow. Izdatelstvo standartov. 2003. 42 p.
11. König M. Literature review of microstructure formation in compacted graphite Iron. International Journal of Cast Metals Research. 2010. Vol. 23. Iss. 3. pp. 185-192. DOI: 10.1179/136404609X12535244328378
12. König M., Wessén M. Influence of alloying elements on microstructure and mechanical properties of CGI. International Journal of Cast Metals Research. 2010. Vol. 23. Iss. 2. pp. 97–110. DOI: 10.1179/136404609X12505973098972
13. Stefanescu D. M., Alonso G., Suarez R. Recent developments in understanding nucleation and crystallization of spheroidal graphite in Iron-Carbon-Silicon alloys. Metals. 2020. No. 10 (2). p. 221. DOI: 10.3390/met10020221
14. Lacaze J., Castro-Roman M. J. Comment on Stefanescu D. M., Alonso G., Suarez R. Recent Developments in Understanding Nucleation and Crystallization of Spheroidal Graphite in Iron-Carbon-Silicon Alloys. Metals. 2020. No 10 (4). p. 471. DOI: 10.3390/met10040471
15. Stefanescu D. M., Alonso G., Suarez R. Reply to Comment on Stefanescu, D. M.; Alonso, G.; Suarez, R. Recent Developments in Understanding Nucleation and Crystallization of Spheroidal Graphite in Iron-Carbon-Silicon Alloys. Metals. 2020. No. 10 (4). p. 481. DOI: 10.3390/met10040481
16. Zykova A. P., Lychagin D. V., Chumaevskiy A. V., Kurzina I. A., Novomeyskiy M. Yu. Influence of modification by ultradispersed powders of oxides of refractory metals and cryolite on structure, mechanical properties and destruction of cast iron SCh25. Izvestiya vuzov. Chernaya metallurgiya. 2014. No. 57 (11). pp. 37–42.
17. Dmitrienko V. I. Features of use of natural and man-caused materials for microalloying and modification of steel. Izvestiya vuzov. Chernaya metallurgiya. 2016. No. 59 (6). pp. 365–370.
18. Kondratyev V. V., Balanovskiy A. E., Ivanov N. A., Ershov V. A., Kornyakov M. V. Evaluation of the influence of modifier composition with nanostructural additives on pray cast iron properties. Metallurg. 2014. No. 5. pp. 48–56.

19. Chaikin V. A., Chaikin A. V., Boldyrev D. A. Use of mixing complex modifiers with calcium-strontium carbonate in manufacture of castings for automobile components made of high-strength and gray cast iron. Liteishchik Rossii. 2010. No. 1. pp. 21–26.
20. Cherepanov A. N., Drozdov V. O., Manolov V. K., Poluboyarov V. A. Influence of nanopowders of refractory compounds on gray cast iron properties. Tyazheloe mashinostroenie. 2012. No. 8. pp. 8–11.
21. Krushenko G. G., Yamskikh I. S., Bonchenkov A. A., Mishin A. S. Quality improvement of iron castings using nanopowders. Metallurgiya mashinostroeniya. 2002. No. 2 (9). pp. 20–21.
22. Kondratyev V. V., Ivanov N. A., Balanovskiy A. E., Ivanchik N. N., Karlina A. I. Improvement of gray cast iron properties by silicon dioxide and carbon nanostructures. Zhurnal Sibirskogo federalnogo universiteta. Seriya: Tekhnika i tekhnologiya. 2016. Vol. 9. No. 5. pp. 671–685.
23. Goldshtein Ya. E., Mizin V. G. Modification and microalloying of cast iron and steel. Moscow. Metallurgiya. 1986. 272 p.
24. Alhussein A., Risbet M., Bastien A., Chobaut J. P., Balloy D., Favergeon J. Influence of silicon and addition elements on the mechanical behavior of ferritic ductile cast iron. Materials Science and Engineering. 2014. Vol. 605. pp. 222–228.
25. Chisamera M., Riposan I., Stan S., Militaru C., Anton I., Barstow M. Inoculated Slightly Hypereutectic Gray Cast Irons. J. Mater. Eng. Perform. 2012. No. 21. pp. 331–338. DOI: 10.1007/s11665-011-9907-2
26. Riposan I., Chisamera M., Stan S., Skaland T. Graphite nucleant (microinclusion) characterization in Ca/Sr inoculated gray irons. Int. J. Cast Met. Res. 2003. Vol. 16. pp. 105–111. DOI: 10.1080/13640461.2003.11819567
27. Edalati K., Akhlaghi F., Nih-Ahmadabadi A. Influence of SiC and FeSi addition on the characteristics of gray cast iron melts poured at different temperatures. J. Mater. Process. Technol. 2005. No. 160. pp. 183–187. DOI: 10.1016/j.jmatprotec.2004.06.007
28. Alonso G., Stefanescu D. M., Larrañaga P. et al. Graphite Nucleation in Compacted Graphite Cast Iron. International Journal of Metalcasting. 2020. Vol. 14. pp. 1162-1171. DOI: 10.1007/s40962-020-00441-2
29. Sommerfeld A., Tonn B. Theory of graphite nucleation in lamellar graphite cast iron. International Journal of Metalcasting. 2009. No. 3 (4). pp. 39–47.
30. Valle N., Theuwissen K., Sertucha J., Lacaze J. Effect of various dopant elements on primary graphite growth. IOP Conference Series: Materials Science and Engineering. 2012. Vol. 27. No. 1. pp. 12–26.
31. Riposan I., Chisamera M., Stan S. et al. Three-stage model for nucleation of graphite in gray cast iron. Materials Science and Technology. 2010. No. 26 (12). pp. 1439–1447.
32. Elbel T., Senberger J., Zadera A., Hampl J. Behaviour of oxygen in cast irons. Archives of Materials Science and Engineering. 2008. Vol. 33. No. 2. pp. 111–116.
33. Hampl J., Elbel T. On modelling of the effect of oxygen on graphite morphology and properties of modified cast irons. Archives of foundry engineering. 2010. Vol. 10. No. 4. pp. 55–60.
34. Campbell J. A hypothesis for cast iron microstructures. Metallurgical and materials transactions B. 2009. Vol. 40. No. 6. pp. 786–801.
35. Ivanov V., Pirozhkova V., Lunev V. Silicon effect on the formation of graphite inclusions in gray cast iron. Eastern-European Journal of Enterprise Technologies. 2017. No. 4 (12). pp. 26–30.

Full content Study of the effect of nanomodifiers from silicon production wastes on morphological form of gray cast iron graphites
Back