Journals →  Obogashchenie Rud →  2021 →  #3 →  Back

COMPLEX RAW MATIREAL UTILIZATION
ArticleName Principles of pyro-hydrometallurgical processing of quartz-leucoxene concentrate with the formation of a pseudobrukite phase
DOI 10.17580/or.2021.03.06
ArticleAuthor Kuzin E. N., Kruchinina N. E., Fadeev A. B., Nosova T. I.
ArticleAuthorData

Mendeleev University of Chemical Technology (Moscow, Russia):
Kuzin E. N., Associate Professor, Candidate of Engineering Sciences, e.n.kuzin@muctr.ru
Kruchinina N. E., Dean, Doctor of Engineering Sciences, Professor, krutch@muctr.ru
Fadeev A. B., Postgraduate Student, fadeev89@mail.ru
Nosova T. I., Student, nti16041998@gmail.com

Abstract

As part of the research, a technology for pyrometallurgical processing of quartz-leucoxene concentrate was proposed that includes quartz-leucoxen grinding and sintering at 1450 °С with the addition of iron (II) or (III) oxide. It has been found that, regardless of the type of iron-containing additive used (iron (II) or (III) oxide), the final sintering product will be represented by pseudobrukite. The presence of rutile and hematite impurities in it indicates an incomplete reaction and requires further optimization. The recovery of titanium compounds from the samples obtained using sulfuric acid solutions with various concentrations was, on average, four to five times higher than that of the initial quartz-leucoxene concentrate. It is noted that an increase in the acid concentration of over 80 % leads to lower recoveries of titanium compounds into the solution. Based on the results obtained, an assumption was made on the possibility of using the products (pseudobrukite) generated in the processing of quartzleucoxene concentrate as a raw material for the production of titanium compounds by the traditional sulfuric acid methods. According to the preliminary calculations, the proposed principle of joint pyrohydrometallurgical processing of quartz-leucoxene concentrate will reduce the cost of titanium dioxide production by almost 1.5 as compared to the autoclave leaching technology.
The work was carried out within the framework of the program to support young scientists and teachers of the D.I. Mendeleev University of Chemical Technology (application No. Z-2020-013.).

keywords Quartz, leucoxene, grinding, sintering, iron-containing additive, pseudobrukite, pyrometallurgical processing
References

1. Diaz-Aguado M. F., Bonnell J. W., Bale S. D., Christensen J., Lundgreen P., Lee J., Gruntman M. Experimental investigation of the secondary and backscatter electron emission from spacecraft materials. Journal of Spacecraft and Rockets. 2020. Vol. 57, Iss. 6. pp. 1–16.
2. Balazic M., Kopac J., Jackson M. J., Ahmed W. Review: titanium and titanium alloy applications in medicine.
International Journal of Nano and Biomaterials. 2007. Vol. 1, Iss. 1. DOI: 10.1504/IJNBM.2007.016517.
3. Whittaker M. Titanium alloys. Metals. 2015. Vol. 5. Iss. 3. pp. 1437–1439.
4. Hasan A. T. M. K., Fang Y., Liu B., Terano M. Surface analytical approach to TiCl3-based Ziegler–Natta catalysts combined with microstructure analysis of polymer. Polymer. 2010. Vol. 51, Iss. 16. pp. 3627–3635.
5. Barreiro A. M., Pinheiro G. K., Wesling B. N., Müller D., Scarabelot L. T., de Souza L. V., Rambo C. R. Aerogel-based TiO2 stable inks for direct inkjet printing of nanostructured layers. Advances in Materials Science and Engineering. 2020. Vol. 2020. pp. 1–9. DOI: 10.1155/2020/4273097.
6. Bernardes J. C., Pinheiro G. K., Müller D., Latocheski E., Domingos J. B., Rambo C. R. Novel modified nonalkoxide sol–gel synthesis of multiphase high surface area TiO2 aerogels for photocatalysis. Journal of Sol-Gel Science and Technology. 2020. Vol. 94. pp. 425–434.
7. Malhotra R. Fossil energy: Selected entries from the Encyclopedia of sustainability science and technology. New York: Springer-Verlag, 2020. 548 p.
8. Sadykhov G. B., Zablotskaya Yu. V., Anisonyan K. G., Kopiev D. Yu., Olyunina T. V. Extraction of high-quality titanium raw materials from leucoxene concentrates of the Yarega deposit. Russian Metallurgy (Metally). 2018. No. 11. pp. 1015–1019.
9. Kopiev D. Yu., Anisonyan K. G., Goncharov K. V., Olyunina T. V., Sadykhov G. B. Study of phase transformations during reduction roasting of leucoxene concentrate with carbon. Metally. 2017. No. 3. pp. 3–7.

10. Kopiev D. Yu., Anisonyan K. G., Olyunina T. V., Sadykhov G. B. Effect of the reducing roasting conditions on sulfuric acid recovery of leucoxene concentrate. Tsvetnye Metally. 2018. No. 11. pp. 56–61. DOI: 10.17580/tsm.2018.11.08.
11. Rodriguez M. H., Rosales G. D., Pinna E. G., Tunez F. M., Toro N. Extraction of titanium from low-grade ore with different leaching agents in autoclave. Metals. 2020. Vol. 10, Iss. 4. DOI: 10.3390/met10040497.
12. Zanaveskin K. L., Meshalkin V. P. Chlorination of quartz-leucoxene concentrate of Yarega field. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science. 2020. Vol. 51. pp. 906–915.
13. Zanaveskin K. L., Maslennikov A. N., Makhin M. N., Zanaveskin L. N. Influence of granulometric composition on leucoxene concentrate processing with titanium tetrachloride obtaining (Yaregskoe deposit). Tsvetnye Metally. 2016. No. 10. pp. 79–85. DOI: 10.17580/tsm.2016.10.11.
14. Sadykhov G. B., Zablotskaya Yu. V., Anisonyan K. G., Kopiev D. Yu., Olyunina T. V., Goncharenko T. V. Obtaining of needle wollastonite under catalytic pressure leaching of leucoxene concentrate by lime milk. Perspektivnye Materialy. 2015. No. 1. pp. 3–7.
15. Zablotskaya Yu. V., Sadykhov G. B., Olyunina T. V., Goncharenko T. V. Prospects for the development of the Yarega deposit as a source of artificial rutile and wollastonite production. Chernaya Metallurgiya. Byulleten' Nauchnotekhnicheskoy i Ekonomicheskoy Informatsii. 2015. No. 9. pp. 12–15.
16. Sadikhov G. B., Zablotskaya Yu. V., Anisonyan K. G., Olyunina T. V. On the complex use of leucoxene ores of the Yarega deposit with the production of synthetic rutile and wollastonite and associated extraction of rare and rare earth elements. Metally. 2016. No. 6. pp. 3–10.
17. Aphairaj D., Wirunmongkol T., Pavasupree S., Limsuwan P. Synthesis of titanate nanotubes from Thai leucoxene mineral. Procedia Engineering. 2012. Vol. 32. pp. 1068–1072.
18. Sadikhov G. B., Zablotskaya Yu. V., Reznichenko V. A., Tagirov R. K. Autoclave leaching of leucoxene concentrate with NaOH solutions. Tekhnologiya Metallov. 2006. No. 8. pp. 2–6.
19. Aphairaj D., Wirunmongkol T., Niyomwas S., Pavasupree S., Limsuwan P. Synthesis of anatase TiO2 nanotubes derived from a natural leucoxene mineral by the hydrothermal method. Ceramics International. 2014. Vol. 40, Iss. 7. pp. 9241–9247.
20. Zanaveskin K. L., Maslennikov A. N., Dmitriev G. S., Zanaveskin L. N. Autoclave processing of quartz-leucoxene concentrate (Yaregskoe deposit). Tsvetnye Metally. 2016. No. 3. pp. 49–56. DOI: 10.17580/tsm.2016.03.08.
21. Kuzin E. N., Kruchinina N. E. Production of complex coagulants based on mineral concentrates and their use in water treatment. Obogashchenie Rud. 2019. No. 3. pp. 43–48. DOI: 10.17580/or.2019.03.07.
22. Hirota K., Bradt R. C. Sintering and synthesis of the pseudobrookite oxide (Fe2TiO5) by the solid state reaction. Analytical Sciences. 1991. Vol. 7. pp. 1275–1278.
23. Armayani A., Andi I., Suminar P. Synthesis of highpurity Fe2TiO5 powders utilizing a local ironstone. Materials Science Forum. 2019. Vol. 964. pp. 50–54.
24. Konyk O. F. Sulfuric acid decomposition of the products of beneficiation of leucoxene raw materials. Syktyvkar: Komi Branch of the USSR Academy of Sciences, 1985. 29 p.
25. Goldin B. A., Ryabkov Yu. I., Sitnikov P. A., Nazarova L. Yu., Tsvetkova E. V. Synthesis of titanates with ilmenite structure. Izvestiya Komi Nauchnogo Tsentra URO RAN. 2011. Vol. 8, No. 4. pp. 29–34.
26. Zablotskaya Yu. V. Autoclave desiliconization of leucoxene concentrate with calcium hydroxide to obtain artificial rutile: dissertation for the degree of Candidate of Engineering Sciences. Moscow, A. A. Baykov Institute of Metallurgy and Materials Science of RAS. 2014. 136 p.
27. Kuzin E. N., Averina Yu. M., Kurbatov A. Yu., Sakharov P. A. Wastewater treatment in the electroplating industry using composite coagulants-reducers. Tsvetnye Metally. 2019. No. 10. pp. 91–96. DOI: 10.17580/tsm.2019.10.15.
28. Kuzin E. N., Kruchinina N. E. Complex coagulants in the process of cleaning waste water of galvanic production. Galvanotekhnika i Obrabotka Poverkhnosti. 2019. Vol. 27, No. 4. pp. 43–49.

Language of full-text russian
Full content Buy
Back