Journals →  CIS Iron and Steel Review →  2020 →  #2 →  Back

Surface treatment and coating
ArticleName Effect of laser treatment modes on metal surface marking color
DOI 10.17580/cisisr.2020.02.09
ArticleAuthor S. M. Gorbatyuk, I. G. Morozova, M. G. Naumova, N. A. Chichenev
ArticleAuthorData

National University of Science and Technology "MISiS":

S. M. Gorbatyuk, Dr. Eng., Prof., Head of Dept. of Engineering of Technological Equipment
I. G. Morozova, Cand. Eng., Assistant Prof., Dept. of Engineering of Technological Equipment
M. G. Naumova, Senior Researcher, Dept. of Engineering of Technological Equipment
N. A. Chichenev, Dr. Eng., Prof., Dept. of Engineering of Technological Equipment, E-mail: chich38@mail.ru

Abstract

The laser beam marking process is considered to be a subject to important scientific research. In this area, there are insufficiently studied problems and concepts requiring their experimental validation and determining the solutions. Upon laser action, the effect of metal surface coloration can be caused by different processes. The most probable is formation of thin oxidic films, although formation of the other compounds is not unlikely as well [1–2]. Under actual values of luminous flux density, however, scanning with laser beam results in occurrence of regular surface roughness. Therefore, the analysis of diffraction effect impact on the image color is also necessary [3–4]. The color images on the metal surface were assessed based on range of colors RAL “Reich Ausschluß für Lieferbedingungen”. In this system, the color space is divided to ranges with identification of each color by its unique index number. When doing research of the metal surface composite regular relief [5] obtained using laser marker, the depth of microroughnesses in differently colored samples was determined. The was performed using non-contact VICWU profilometer. Due to the method of measurement technological specificity, this equipment does not have destructive effect on the object under study. The roughness values (Rz and Ra) of the surfaces under study were measured based on acceptably small areas, thereat the base lines were selected in such way that to consider the surface waviness effect on the roughness values Rz and Ra [6]. The research results demonstrated that change of surface roughness values Ra and Rz by 1.5 times (owing to change of the surface laser treatment mode), changes the specimen metal surface coloration drastically.

keywords Laser beam marking, metal surface, surface composite regular relief, depth of microroughnesses, roughness parameters, noncontact profilometer, surface profilogram
References

1. Kuzmina T. A., Masyagin V. S. Laser Engraving as Modern Marking Method. Collection of papers of XVII international Scientific Practical Conference “Scientific Community of XXI Century Students. ENGINEERING SCIENCES” (Russia, Novosibirsk, February 18, 2014). p. 6.
2. Gornyi S. G., Yudin K. V. Laser Beam Marking Industry. Metal Treatment Dimensional Machining Technologies. 2003. No. 6(18), pp. 21–23.
3. Grigoryants A. G., Shiganov I. N., Misyurov A. I. Laser Treatment Processes. M.: MGTU imeni N.E. Baumana. 2006. p. 664.
4. Veiko V. P., Gornyi S. G., Odintsova G. V., Patrov M. I., Yudin K. V. Formation of Multicolor Image on Metal Surfaces Upon Its Laser Oxidation. Izvestiya VUZov. Priborostroenie. 2011. Vol. 54. No. 2. pp. 47–51.
5. Kuznetsov P. M., Fedorov V. A. Features of Relief Formation on Metal Surfaces in the Laser Spot. Vestnik Tambovskogo gosudarstvennogo universiteta imeni G. R. Derzhavina. 2015. Vol. 20, Iss. 4. pp. 872–877.
6. Antonov D. N., Burtsev A. A., Butkovskii O. Ya. Metal Surface Coloration Under Laser Pulse Irradiation. Journal of Technical Physics. 2014. Vol. 84, Iss. 10. pp. 83–86.
7. Eronko S. P., Kuklev A. V., Tkachev M. Y., Tinyakov V. V., Mechik S. V. Improvement in the Reliability of Mechanical Flux Feed Systems for Continuous Slab-Casting Machine Molds. Metallurgist. 2019. Vol. 62 (9-10). pp. 892–899. DOI: 10.1007/s11015-019-00742-w.
8. Eronko S. P., Tkachev M. Y., Oshovskaya E. V. Hydraulic simulation of the replacement of submerged nozzles in slab continuous casters. Russian Metallurgy (Metals). 2017. Vol. 6. pp. 441–446. DOI: 10.1134/S0036029517060088.
9. Eronko S. P., Danilov V. L., Kuklev A. V., Tkachev M. Y., Tinyakov V. V., Mechik S. V. Experience of Design and Industrial Application of Systems for the Driven Feed of Slag-Forming Mixtures into the Crystallizers of Slab CCM. Metallurgist. 2020. Vol. 64 (3-4). pp. 214–222. DOI: 10.1007/s11015-020-00986-x.
10. Eronko S. P., Danilov V. L., Tkachev M. Y., Tinyakov V. V., Ponomareva E. A. Model Studies and Modernization of a Manipulator for Tapping Spout Replacement in Continuous Steel Casting. Metallurgist. 2020. Vol. 64 (3-4). pp. 301–308. DOI: 10.1007/s11015-020-00996-9.
11. Kalinsky O. I., Kruzhkova G. V., Aleksakhin A. V., Molchanov G. A. Selection of the Optimal Strategy for the Supply of Raw Materials Based on Game Theory. Smart Innovation, Systems and Technologies, 2019. Vol. 139. pp. 577–583. DOI: 10.1007/978-3-030-18553-4_70.
12. Naumova M., Basyrov I., Aliev K. Reengineering of the ore preparation production process in the context of “Almalyk MMC” JSC. MATEC Web of Conferences. 2018. Vol. 224, Article No. 01030. DOI: 10.1051/matecconf/201822401030.
13. Eronko S. P., Oshovskaya E. V., Tkachev M. Y. Fast replacement of submersible tundish nozzles in a continuous slab-casting machine. Steel in Translation. 2016. Vol. 46 (1). pp. 33–38. DOI: 10.3103/S0967091216010034.
14. Dobrzycki P., Ivannikov A. L., Rybak J., Shkodkina V. O., Tyulyaeva Y. The impact of Rapid Impulse Compaction (RIC) of large non-cohesive material deposits on the surrounding area. IOP Conference Series: Earth and Environmental Science. 2019. Vol. 362 (1). article No. 012132. DOI: 10.1088/1755-1315/362/1/012132.
15. Snitko S. A., Yakovchenko A. V., Sotnikov A. L. Influence of wheel billet stamping schemes on power modes of forming press operation and on wear of the deformation tool. Izvestiya vuzov. Chernaya metallurgiya. 2018. Vol. 61 (5). pp. 385–392. DOI: 10.17073/0368-0797-2018-5-385-392.
16. Ganzulenko O. Yu., Larionova E. V., Petkova A. P. Laser Beam Marking Technology for Stock-Produced Products Made of Metal and Polymer Materials for Their Counterfeit Protection and Identification. “NAUKOVEDENIE” Internet magazine. 2013. No. 5 (18). Available at: http://naukovedenie.ru/PDF/72tvn513.pdf
17. Chichenev N. A., Gorbatyuk S. M., Naumova M. G., Morozova I. G. Using the similarity theory for description of laser hardening processes. CIS Iron and Steel Review. 2020. Vol. 19. pp. 44–47. DOI: 10.17580/cisisr.2020.01.09.
18. Larionova E. V. Development of Technology for Obtaining Displayed Multicolor Images on Metal Surfaces Using Lasers: Thesis for PhD in Eng.: 17.00.06 – Industrial Aesthetics and Design. GOU VPO “SZTU” (State educational institution of higher vocational education, “North-West Extramural Technical University”). 2010, p. 168.
19. Odintsova G. V. Research and Development of Technology for Color Laser Beam Marking Metals by Local Oxidation Method: Author’s Abstract Thesis for PhD in Eng.: 05.27.03 – Quantum Electronics. St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO). 2014. p. 20.
20. Vasilyev O. S. Laser Formation of Metal Surface Microgeometry Using Nanosecond Duration Pulses: Thesis for Ph.D. in Engineering Sciences: 05.11.14. FGAOU VO St. Petersburg National Research University of Information Technologies, Mechanics and Optics. 2017. p. 173.
21. Ganzulenko O. Yu., Petkova A. P. Selection of Steel Composition for Obtaining Full Color Spectrum Images on Product Surfaces Upon Pulse Laser Irradiation. Zapiski Gornogo institute. Sovremennye problem mashinostroeniya, materialovedeniya i priborostroeniya gornogo, metallurgicheskogo i neftepererabatyvayushchego proizvodstv. 2014. Vol. 209. pp. 216–219.
22. Karlov N. V. Kirichenko N. A., Lukyanchuk B.S. Laser Thermochemistry. Fundamentals and Application. M.: Nauka. 1992. 296 p.
23. Shtokkum V., Klain Z. Color Laser Beam Marking. Patent No. 2356741 Russian Federation, B41M5/40. Patent Owner MERK Patent GMBKh (DE). Application: 2006120080/12 dated 15.10.2004.
24. Valiulin A. G., Gornyi S. G., Grechko Yu. B., Patrov M. V., Yudin K. V., Yurevich V. A. Laser Beam Marking of Materials. Fotonika. 2007. No. 3. pp. 16–22.
25. Artiukh V., Mazur V., Pokrovskaya E. Influence of Strip Bite Time in Work Rolls Gap on Dynamic Loads in Strip Rolling Stands. MATEC Web of Conferences. 2016. 86. Article No. 01030. DOI: 10.1051/matecconf/20168601030.
26. Shapoval A. N., Shapoval A. A. Development of the unit for multi-stage vibration drawing of metal products. Non-Ferrous Metals. 2002. No. 4. pp. 77–82.
27. Markov O. E., Gerasimenko O. V., Shapoval A. A., Abdulov O. R., Zhytnikov R. U. Computerized simulation of shortened ingots with a controlled crystallization for manufacturing of high-quality forgings. International Journal of Advanced Manufacturing Technology. 2019. Vol. 103 (5-8). pp. 3057–3065. DOI: 10.1007/s00170-019-03749-4.
28. Dragobetskii V., Zagirnyak M., Naumova O., Shlyk S., Shapoval A. Method for determination of technological durability of plastically deformed sheet parts of vehicles. International Journal of Engineering and Technology (UAE). 2018. Vol. 7(4). pp. 92–99. DOI: 10.14419/ijet.v7i4.3.19558.
29. Sanjay M. R., Arpitha G. R., Senthamaraikannan P., Kathiresan M., Saibalaji M. A., Yogesha B. The Hybrid Effect of Jute/Kenaf/E-Glass Woven Fabric Epoxy Composites for Medium Load Applications: Impact, Inter-Laminar Strength, and Failure Surface Characterization. Journal of Natural Fibers. 2019. Vol. 16 (4). pp. 600–612. DOI: 10.1080/15440478.2018.1431828.
30. Bharath K. N., Sanjay M. R., Jawaid M., Harisha Basavarajappa S., Siengchin S. Effect of stacking sequence on properties of coconut leaf sheath/jute/E-glass reinforced phenol formaldehyde hybrid composites. Journal of Industrial Textiles. 2019. Vol. 49 (1). pp. 3–32. DOI: 10.1177/1528083718769926.
31. Gupta R. K., Pant B., Agarwala V., Agarwala R. C., Sinha P. P. Effect of Pressure and Temperature on Phase Transformation and Properties of Titanium Aluminide Obtained through Reaction Synthesis. Journal of Materials Science and Technology. 2010. Vol. 26 (8). pp. 693-704. DOI: 10.1016/S1005-0302(10)60109-0.
32. Gupta R. K., Pant B., Kumar V., Agarwala V., Sinha P. P. Deformation behavior of γ+α 2 Ti aluminide processed through reaction synthesis. Materials Science and Engineering A. 2013. Vol. 559. pp. 49-67. DOI: 10.1016/j.msea.2012.08.016.

Full content Effect of laser treatment modes on metal surface marking color
Back