Journals →  Obogashchenie Rud →  2020 →  #4 →  Back

THEORY OF PROCESSES
ArticleName On assessing the vibrational transportation rate
DOI 10.17580/or.2020.04.04
ArticleAuthor Blekhman I. I., Blekhman L. I., Vasilkov V. B.
ArticleAuthorData

Institute for Problems in Mechanical Engineering of RAS (St. Petersburg, Russia):

Blekhman I. I., Head of Laboratory, Doctor of Physical and Mathematical Sciences, Professor, iliya.i.blekhman@gmail.com
Blekhman L. I., Leading Researcher, Candidate of Engineering Sciences, liblekhman@yandex.ru
Vasilkov V. B., Leading Researcher, Doctor of Engineering Sciences, vlvasilkov@yandex.ru

Abstract

The vibrational transportation rate is one of the main process parameters to be established when designing and calculating vibrational transportation and process machines. The theory of vibrational displacement usually enables a satisfactory description of the displacement rate for single bodies or a layer of granular material on a vibrating surface. This requires considering numerous regimes associated with a combination of various types of motion and making complex calculations or using special nomograms. Any derivation and use of formulas for calculating the vibrational transportation rate for each regime would be impractical, especially since this does not correspond to the parametrization accuracy. It is, therefore, suggested to consider a simpler «rough» model and to use simple approximating formulas. As a result, simple formulas have been obtained for evaluating the vibrational transportation rate in regimes with intensive tossing, typical for most traditional transportation and process machines, as well as for a number of new machines with more intensive vibration effects. Incidentally, expressions were obtained for an important process quantity — the relative flight duration of the material. Finally, the paper provides considerations on the research methodology for similar cases of complex system behavior.
The study was completed under the state assignment of the Ministry of Science and Higher Education of the Russian Federation covering research and development on topic No. АААА-А18-118011990283-5.

keywords Vibrational transportation, modeling, average rate, complex regimes, rough model, vibration machines, screens, research methodology
References

1. Blekhman I. I., Dzhanelidze G. Yu. Vibrational movement. Moscow: Nauka, 1964. 410 p.
2. Nagayev R. F. Periodic modes of vibration movement. Moscow: Nauka, 1978. 160 p.
3. Vibrations in the technique. Vol. 4. Vibration processes and machines. Ed. E. E. Lavendel. Moscow: Mashinostroyenie, 1981. 509 p.
4. Levin L. P. Questions of theory and calculation of electric vibration machines (conveyors, feeders, screens of the mining and processing industry): Dissertation for the degree of Doctor of Engineering Sciences. Leningrad, VNII «Mekhanobr», 1956. 314 p.
5. Blekhman I. I. Vibrational mechanics and vibrational rheology (theory and applications). Moscow: Fizmatlit, 2018. 752 p.
6. Brusin V. A. To the theory of vibratory transportation. Izvestiya Vuzov. Radiofizika. 1960. Vol. III, Iss. 3. pp. 467–477.
7. Gorbikov S. P., Neymark Yu. I. The main modes of movement during vibratory conveying with tossing. Izvestiya AN SSSR. Mekhanika Tverdogo Tela. 1981. No. 4. pp. 39–50.
8. Gorbikov S. P., Neymark Yu. I. The results of calculating the average speed of vibratory transportation. Izvestiya AN SSSR. Mashinovedenie. 1987. No. 4. pp. 39–42.
9. Goncharevich I. F. Vibratory transportation dynamics. Moscow: Nauka, 1972. 244 p.
10. Shchigel V. A., Grinbaum A. S. Modes of tossing a particle on a harmonically oscillating plane. Izvestiya AN SSSR. Mashinovedenie. 1974. No. 6. pp. 17–21.
11. Vaisberg L. A. Design and calculation of vibration screens. Moscow: Nedra, 1986. 144 p.
12. Dresig H., Fidlin A. Schwingungen mechanischer antriebssysteme: modellbildung, berechnung, analyse, synthese. Berlin, Heidelberg, 2014. 651 p.
13. Biderman V. L. Mechanical vibration theory. 3 ed., rev. Moscow: URSS, 2017. 416 p.
14. Mishurov N. P. Determination of the rate of fodder grain layer vibratory transportation. Tekhnika i Oborudovanie Dlya Sela. 2011. No. 11. pp. 40–42.
15. Akulova M. V., Ogurtsov V. A., Ogurtsov A. V., Aleshina A. P. To the calculation of particles ensemble movement speed on vibrating screen surface. Vestnik Ivanovskogo Gosudarstvennogo Energeticheskogo Universiteta. 2016. No. 2. pp. 50–53.
16. Bykov V. S., Kutishev D. S., Sipko V. V., Yakovlev A. A. Movement of particles of cleaned material with a separate from a solution. Current problems of science and education at the modern stage: Collection of scientific papers based on the materials of the All-Russian scientific and practical conference. Voronezh, 2018. pp. 29–40.
17. Blekhman I. I., Blekhman L. I., Vaisberg L. A., Vasilkov V. B. Energy consumption in vibrational transportation and process machines. Obogashchenie Rud. 2019. No. 1. pp. 18–27. DOI: 10.17580/or.2019.01.03.
18. Arhipenko A. V., Nirov A. D. Simulation of vibrating process of bulk material. Nauchnye Trudy KubGTU. 2019. No. 2. pp. 7–16.
19. Borodulin D. M., Zorina T. V., Ivanets V. N., Nevskaya E. V., Tyurina O. E., Borisova A. E. Key operation parameters of the vibration mixer in the production of flour baking mixes. Tekhnika i Tekhnologiya Pishchevykh Proizvodstv. 2019. Vol. 49, No. 1. pp. 77–84.
20. Markov K. K. Processes of vibrational movement of granular mixtures with separation in complex force fields. Irkutsk: IrNITU, 2020. 163 p.
21. Altshul G. M., Gouskov A. M., Panovko G. Y., Shokhin A. E. Interaction model of one jaw of a vibrating jaw crusher with the processed rock, taking into account the properties of the electric motor. IOP Conf. Series: Materials Science and Engineering. 2020. Vol. 747, Iss. 1. DOI: 10.1088/1757-899X/747/1/012047.
22. Blekhman I. I., Blekhman L. I., Vaisberg L. A., Vasilkov V. B., Yakimova K. S. On the phenomenon of vibrational diffusion segregation in bulk media. Doklady Akademii Nauk. 2016. Vol. 466, No. 1. pp. 30–32.
23 Vaisberg L. A., Dmitriev S. V., Mezenin A. O. Controllable magnetic anomalies in mineral processing technologies. Gornyi Zhurnal. 2017. No. 10. pp. 26–32. DOI: 10.17580/gzh.2017.10.06.
24. Blekhman I. I., Vaisberg L. A., Vasilkov V. B., Lavrov B. P., Yakimova K. S. Universal vibration stand: experience of use in research, some results. Nauchno-tekhnicheskiye Vedomosti SPbGTU. 2003. No. 3. pp. 224–227.
25. Vasilyeva N. V., Erokhina O. O. Post-impact recovery coefficient calibration in DEM modeling of granular materials. Obogashchenie Rud. 2020. No. 4. pp. 42–48. DOI: 10.17580/or.2020.04.07.
26. Blekhman I. I. Multimode character of dynamical systems as a cause of their complex («chaotic») behavior. Proc. of the 4th Intern. сonf. on сomputation methods in structural dynamics and earthquake engineering (COMPDYN 2013). Cos Island, Greece, June 2013. pp. 2145–2157.
27. Feudel U., Pisarchik A. N., Showalter K. Multistability and tipping: From mathematics and physics to climate and brain — Minireview and preface to the focus issue. Chaos. 2018. Vol. 28. DOI: 10.1063/1.5027718.
28. Li G., Yue Y., Xie J., Grebogi C. Multistability in a quasiperiodically forced piecewise smooth dynamical system. Communications in Nonlinear Science and Numerical Simulation. 2020. Vol. 84. DOI: 10.1016/j.cnsns.2019.105165.
29. Complexity, dynamics, control, and applications of nonlinear systems with multistability. Special Issue. 2020. URL: https://www.hindawi.com/journals/complexity/si/401248/page/2/.
30. Babitsky V. I., Krupenin V. L. Vibration of strongly nonlinear discontinuous system. Springer–Verlag, 2001. 404 p.

Language of full-text russian
Full content Buy
Back