Journals →  Gornyi Zhurnal →  2019 →  #11 →  Back

FROM THE OPERATIONAL EXPERIENCE OF THE MINING COMPANIES AND THE ORGANIZATIONS
NOSOV MAGNITOGORSK STATE TECHNICAL UNIVERSITY
ArticleName Features of the Ural low-titanium magnetite ore processing
DOI 10.17580/gzh.2019.11.06
ArticleAuthor Grishin I. A., Orekhova N. N., Garkavi M. S., Gorlova O. E.
ArticleAuthorData

Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia:

I. A. Grishin, Head of Chair, Associate Professor, Candidate of Engineering Sciences, igorgri@mail.ru
N. N. Orekhova, Professor, Doctor of Engineering Sciences
M. S. Garkavi, Professor, Doctor of Engineering Sciences
O. E. Gorlova, Associate Professor, Candidate of Engineering Sciences

Abstract

The article presents the results of technological research, which is the basis for the development of a scheme for the staged magnetic concentration of low-titanium magnetite ore from the Suroyamskoe deposit. The object of the research was technological samples of primary titanomagnetite ore with a mass fraction of total iron of 13.87% and titanomagnetite ore from the upper oxidized zone of the deposit, with a mass fraction of total iron of 10.97%. During laboratory tests, the material constitution, physical and mechanical properties, crushability, grindability and processibility of the samples by magnetic separation were determined. It is found that the material constitution of the ore sample from the oxidized zone features the increased mass fraction of aluminum oxide and silicon oxide, as well as the presence of sphene, which indicates the formation of clay minerals in the processes of natural weathering and dissociation of rocks. For primary titanomagnetite ore, the possibility of coarse dry magnetic separation of the initial ore with a particle size of –20 + 5 mm is found, which allows extraction of the magnetic fraction at the yield of 55.26% and the mass fraction of 20.8% Fe total at the recovery of 83.41%. For weathered oxidized titanomagnetite ore, washing is found to be expedient, which allows increasing the mass fraction of iron before wet magnetic separation by 2.1% at the iron extraction of 86.8% in washed ore and reduced mass fraction of titanium by 0.3%. According to the proposed technology of the staged magnetic separation, it is possible to extract a good-quality iron concentrate with iron mass fraction of 63.1% from the ledge ore of the of the Suroyamskoye deposit. The concentrate with a rather high mass fraction of iron of 58.2% can be obtained from the low-grade weathered oxidized ore. Simple circuits, structural arrangements and low costs of the proposed technologies for processing low-titanium ore from the Suroyamskoye deposit will allow production of iron concentrates suitable for use at metallurgical plants of the Chelyabinsk Region.

keywords Mineral processing technology, low-titanium magnetite ores, magnetic separation, washing, technological indicators, iron concentrate
References

1. About the state and use of mineral resources of Russian Federation in 2016 and 2017 : state report. Moscow : LLC «Mineral-Info», 2018. 372 p.
2. Application guide for Classification of solid mineral reserves and potential resources. Iron ores. Moscow, 2007. 40 p.
3. Yushina T. I., Petrov I. M., Avdeev G. I., Valavin V. S. Analysis of state-of-the-art in iron ore mining and processing in Russian Federation. Gornyi Zhurnal. 2015. No. 1. pp. 41–47. DOI: 10.17580/gzh.2015.01.08
4. Bersenev I. S., Ganin D. R., Druzhkov V. G., Panychev А. А. Regularities of the concentration of chemical elements in the minerals of aglomerates from the magnetite concentrate of the Mikhailovskoe deposit. Chernye Metally. 2018. No. 12. pp. 15–19.
5. Bykhovskiy L. Z., Pakhomov F. P., Turlova M. A. Complex titanium magnetite ore deposit of Russia – The major mineral resources for the iron industry. Razvedka i okhrana nedr. 2007. No. 6. pp. 20–23.
6. Bykhovskiy L. Z., Tigunov L. P., Pakhomov F. P. Ilmenite and titanomagnetite deposites of Russia connected with ultrabasic and basic massives: discovery potential and complex use. Ultrabasite-basite zones and the related mineral deposits in the folded regions : III international conference proceedings. Ekaterinburg : Institut geologii i geokhimii UrO RAN, 2009. Vol. 1. pp. 93–96.
7. Smirnov L. A., Kushnarev A. V. Processing of vanadium-bearing titanium magnetite material in Russia—Current condition and prospects. Chernaya metallurgiya. 2013. No. 5(1361). pp. 3–21.
8. Kornilkov S. V., Kantemirov V. D. Major trends in production and consumption of iron ore in Russia. Izvestiya vuzov. Gornyi zhurnal. 2014. No. 2. pp. 14–20.
9. Chizhevskiy V. B., Shavakuleva O. P., Gmyzina N. V. The enrichment of titaniferous magnetite ores in the South Urals. Vestnik Magnitogorskogo tekhnicheskogo universiteta im. G. I. Nosova. 2012. No. 2(38). pp. 5–7.
10. Chizhevskiy V. B., Shavakuleva O. P. Titaniferous magnetite ores enrichment in order to receive conditioning ilmenite concentrates. Vestnik Magnitogorskogo tekhnicheskogo universiteta im. G. I. Nosova. 2013. No. 4(44). pp. 10–13.
11. Arkhipova Yu. A. The current status of titanium base Far East of Russia and the prospects for its development. Regionalnaya ekonomika: teoriya i praktika. 2010. No. 32. pp. 36–43.
12. Lyutoev V. P., Makeev A. B., Lysyuk A. Yu. Exploring a possibility to determine titanium magnetite ores mineral composition by spectroscopy data. Obogashchenie Rud. 2017. No. 5. pp. 28–36. DOI: 10.17580/or.2017.05.05
13. Kantemirov V. D., Titov R. S., Yakovlev A. M. Appraisal of titanium magnetite ores mineral composition effect upon magnetic concentration results. Obogashchenie Rud. 2017. No. 4. pp. 36–41. DOI: 10.17580/or.2017.04.07
14. Gladskikh V. I., Grom S. V., Emelin K. A., Chizhevskiy V. B., Shavakuleva O. P. State and development prospects of the raw material base of Magnitogorsk Iron & Steel Works. Gornyi Zhurnal. 2012. Special issue No. 3. pp. 12–14.
15. Zhilin I. V., Puchkov V. N. The geology and ore potential of the Nyazepetrovsk zone (Middle Urals). Ufa : Design Poligraph Service Ltd., 2009. 184 p.
16. Zhilin I. V., Plokhikh N. A. Suroyamskoe deposit of complex vanadium-bearing ore is a critical mineral resource base for the iron industry in the Chelyabinsk Region. Use of Mineral Reserves and Resources in the Chelyabinsk Region – Current Condition and Prospects : Scientific-and-Practical Conference Proceedings. Chelyabinsk, 2000. pp. 93–95.
17. Baranov V. F., Patkovskaya N. А., Tasina Т. I. Current trends in magnetite iron ores processing technology. Basic trends. Obogashchenie Rud. 2013. No. 3. pp. 10–17.
18. Pelevin A. E., Sytykh N. A. Titanomagnetite ore two-stage grinding circuit tests. Obogashchenie Rud. 2018. No. 2. pp. 13–18. DOI: 10.17580/or.2018.02.03
19. Pelevin A. E. Technology of enrichment of magnetite ore and ways to improve the quality of iron concentrates. Izvestiya vuzov. Gornyi zhurnal. 2011. No. 4. pp. 20–28.
20. Dmitriev A., Vitkina G., Petukhov R., Chesnokov Yu. Titanium Ores and Concentrates and Their Treatment. Shechtman International Symposium. Cancun, 2014. Vol. 3. Non-ferrous and iron & steel. pp. 359–368.
21. Jena B. C., Dresler W., Reilly I. G. Extraction of titanium, vanadium and iron from titanomagnetite deposits at pipestone lake, Manitoba, Canada. Minerals Engineering. 1995. Vol. 8, No. 1-2. pp. 159–168.
22. Chengbao Xu, Yimin Zhang, Tao Liu, Jing Huang. Characterization and Pre-Concentration of Low-Grade Vanadium-Titanium Magnetite Ore. Minerals. 2017. Vol. 7, Iss. 8. 137. DOI: 10.3390/min7080137
23. Hosseinzadeh M., Alizadeh M., Hosseini M. R. Mineralogical and physical beneficiation studies for iron extraction from Bardaskan titanomagnetite placer deposit. Journal of Mining and Environment. 2017. Vol. 8, No. 2. pp. 191–201.
24. Pan Chen, Panpan Hou, Jihua Zhai, Wei Sun. A novel method for the comprehensive utilization of iron and ti tanium resources from a refractory ore. Separation and Purification Technology. 2019. Vol. 226. pp. 1–7.
25. Weijun Liu, Jie Zhang, Weiqing Wang, Jie Deng, Bingyan Chen et al. Flotation behaviors of ilmenite, titanaugite, and forsterite using sodium oleate as the collector. Minerals Engineering. 2015. Vol. 72. pp. 1–9.
26. Yulei Sui, Yufeng Guo, Tao Jiang, Guan-zhou Qiu. Separation and recovery of iron and titanium from oxidized vanadium titano-magnetite by gas-based reduction roasting and magnetic separation. Journal of Materials Research and Technology. 2019. Vol. 8, Iss. 3. pp. 3036–3043.
27. Makushev S. Yu., Kanaev I. V., Cherepanov D. V. Crushing-and-concentration p lant of “EVRAZ KGOK” JSC. Gornyi Zhurnal. 2013. Special issue No. 9-1. pp. 13–16.
28. Kornilkov S. V., Dmitriev A. N., Pelevin A. E., Yakovlev A. M. Separate processing of ore at Gusevogorsky deposit. Gornyi Zhurnal. 2016. No. 5. pp. 86–90. DOI: 10.17580/gzh.2016.05.12
29. Petukhov R. V., Dmitriev A. N., Kornilkov S. V., Pelevin A. E., Vitkina G. Yu., Chesnokov Yu. A. Metallurgical evaluation of the Kachkanar deposit ore and concentrat es. Fruitful Heritage of V. E. Grum-Grzhimaylo : History, Presence and Future : Proceedings of III All-Russian Scientificand-Practical Conference of Students, Postgraduates and Young Scientists Devoted to the 150th Anniversary of Vladimir E. Grum-Grzhimaylo. Ekaterinburg : UrFU, 2014. Iss. 2. pp. 90–95.
30. Ostapenko P. E. Iron ore processing. Moscow : Nedra, 1977. 274 p.

Language of full-text russian
Full content Buy
Back