Журналы →  Non-ferrous Мetals →  2019 →  №1 →  Назад

MATERIALS SCIENCE
Название Strategy of refining the structure of aluminum-magnesium alloys by complex microalloying with transition elements during casting and subsequent thermomechanical processing
DOI 10.17580/nfm.2019.01.05
Автор Aryshnskii E. V., Bazhin V. Yu., Kawalla R.
Информация об авторе

Samara National Research University, Samara, Russia1; Technische Universität Bergakademie Freiberg, Freiberg, Germany2:

E. V. Aryshnskii, Assistant Professor1,2, ar-evgenii@ya.ru

 

Saint-Petersburg Mining University, St. Petersburg, Russia:
V. Yu. Bazhin, Professor, Bazhin-alfoil@mail.ru

 

Technische Universität Bergakademie Freiberg, Freiberg, Germany:
R. Kawalla, Professor, rudolf.kawalla@imf.tu-freiberg.de

Реферат

T he article reviews the studies on the microalloying of aluminum alloys with such transition metals as Nb, Zr, Hf and Sc for the purpose of grain refinement. It has been shown that each of these elements is intrinsically able to refine the structure during casting. Peritectic reaction explains the capability of all above elements, except Sc, to modify structure during casting. Zr and Sc belong to the best grain refiners in aluminum alloys, while Nb is close second, and Hf is also a good grain modifier. However, using these elements in combination gives higher effect on grain refinement and lower concentration required for it. Analysis of Al – Zr – Hf, Al – Sc – Hf, Al – Sc – Nb and Al – Zr – Nb ternary diagrams shows that Nb, Zr, Hf and Sc reduce each other’s solid solubility in aluminum, which makes their combined use in grain refinement very effective. In addition, it has been analyzed how beneficial complex microalloying can be for grain refinement during hot deformation. It is especially evident in magnesium rich aluminum alloys. Such alloys contain large amount of the second phase coarse particles, which present potential new grains nuclei. Besides, due to small size of subgrains in such alloys, these particles specifically will be the major nucleation source during recrystallization. At the same time, the above transition elements facilitate formation of secondary fine (including nano-size) particles, retarding recrystallization, thus stimulating activation of maximum nuclei. To achieve the maximum effect, it is necessary to maintain the correct proportion of coarse intermetallic compounds capable to be potential nucleation sites and fine particles precipitated from supersaturated solid solution, which shall retard recrystallization without blocking it completely.
The article is published as a platform for discussion.

Ключевые слова Aluminum alloys, structure modification, grain refinement, transition metals, recrystallization, second phase intermetallic particles
Библиографический список

1. Aryshenskii E. V., Aryshenskii V. Yu., Grechnikova A. F., Beglov E. D. Evolution of Texture and Microstructure in the Production of Sheets and Ribbons from Aluminum Alloy 5182 in Modern Rolling Facilities. Metal Science and Heat Treatment. 2014. Vol. 56, Iss. 7–8. pp. 347–352.
2. Wells M. A., Samarasekera I. V., Brimacombe J. K., Hawbolt E. B., Lloyd D. J. Modeling the microstructural changes during hot tandem rolling of AA5XXX aluminum alloys: Part I. Microstructural evolution. Metallurgical and Materials Transactions: B. 1998. Vol. 29, Iss. 3. pp. 611–620.
3. Oryshchenko A. S., Osokin E. P., Barakhtina N. N., Drits A. M., Sosedkov S. M. Aluminum-magnesium alloy 1565 ch (1565ч) for cryogenic application. Tsvetnye Metally. 2012. No. 11. pp. 84–90.
4. Hirsch J. Aluminium in Innovative Light-Weight Car Design. Materials Transactions. 2011. Vol. 52, Iss. 5. pp. 818–824.
5. Bronz A. V., Еfremov V. I., Plotnikov A. D., Chernyavsky A. G. Alloy 1570C — material for pressurized structures of advanced reusable vehicles of RSC Energia. Kosmicheskaya tekhnika i tekhnologii. 2014. No. 4. P. 63.
6. Tepterev M. S., Konovalov S. V., Aryshenskiy V. Yu. Influence study of thermal-mechanical treatment conditions of 5XXX group alumina alloy on corrosion resistance. Proizvodstvo Prokata. 2018. No. 9. pp. 32–38.
7. Aryshenskiy Ye. V., Guk, S. V., Galiyev E. E., Drits A. M., Kawalla R. Evaluation of applicability of new aluminum alloy 1565ch in automotive industry. Deformatsiya i Razrushenie materialov. 2018. No. 9. pp. 40–46.
8. Wang F., Liu Z., Qiu D., Taylor J. A., Easton M., Zhang M. Revisiting the role of peritectics in grain refinement of Al alloys. Acta Materialia. 2013. Vol. 61, No. 1. pp. 360–370.
9. Wang F., Qiu D., Liu Z.-L., Taylor J., Easton M., Zhang M. Crystallographic study of Al3Zr and Al3Nb as grain refiners for Al alloys. Transactions of Nonferrous Metals Society of China. 2014. Vol. 24, No. 7. pp. 2034–2040.
10. Li H., Li D., Zhu Z., Chen B., Chen X., Yang C., Zhang H., Kang W. Grain refinement mechanism of as-cast aluminum by hafnium. Transactions of Nonferrous Metals Society of China. 2016 Vol. 26, No. 12. pp. 3059–3069.
11. Wang F., Qiu D., Liu Z., Taylor J., Easton M., Zhang M. The grain refinement mechanism of cast aluminium by zirconium. Acta Materialia. 2013. Vol. 61, Iss. 15. pp. 5636–5645.
12. Zakharov V. V. Effect of Scandium on the Structure and Properties of Aluminum Alloys. Metal Science and Heat Treatment. 2003. Vol. 45, Iss. 7-8. pp. 246–253.
13. Davydov V. G., Elagin V. I., Zakharov V. V., Rostoval D. Alloying aluminum alloys with scandium and zirconium additives. Metal Science and Heat Treatment. 1996. Vol. 38, Iss. 8. pp. 347–352.
14. Kazakova E. F., Sokolovskaya E. M., Podyakova E. I., Portnoi V. K., Tolmacheva Yu. I. Isothermal section of the Al – Nb – Zr system at 770°К. Moscow University Chemical Bulletin. 1994. Vol. 35, No. 4. pp. 342–344.
15. Rokhlin L. L., Bochvar N. R., Boselli J., Dobatkina T. V. Investigation of the Phase Relations in the Al-Rich Alloys of the Al – Sc – Hf System in Solid State. Journal of Phase Equilibria and Diffusion. 2010. Vol. 31, Iss. 4. pp. 327–332.
16. Kazakova E. F., Dmitrieva N. E., Dunaev S. F. Interaction of Aluminum with Niobium and Scandium in Equilibrium and Nonequilibrium States. Moscow University Chemistry Bulletin. 2015. Vol. 70, Iss. 1. pp. 34–39.
17. Rokhlin L. L., Bochvar N. R., Boselli J., Dobatkina T. V. Investigation of the Al-Rich Part of the Al – Zr – Hf Phase Diagram for Solid State. Journal of Phase Equilibria and Diffusion. 2010. Vol. 31, Iss. 6. pp. 504–508.
18. Ryum N. Precipitation in an Al – 1.78 wt% Hf alloy after rapid solidification. Journal of Materials Science. 1975. Vol. 10, Iss. 12. pp. 2075–2081.
19. Jia Z., Huang H., Wang X., Xing Y., Liu Q. Hafnium in Aluminum Alloys: A Review. Acta Metallurgica Sinica (English Letters). 2016. Vol. 29, Iss. 2. pp.105–119.
20. Forbord B., Hallem H., Ryum N., Marthinsen K. Precipitation and recrystallisation in Al – Mn – Zr with and without Sc. Materials Science and Engineering: A. 2004. Vol. 387–389. pp. 936–939.
21. Seidman D. N., Marquis E. A., Dunand D. C. Precipitation strengthening at ambient and elevated temperatures of heattreatable Al(Sc) alloys. Acta Materialia. 2002. Vol. 50, Iss. 16. pp. 4021–4035.
22. Huang H., Jiang F., Zhou J., Wei L., Qu J., Liu L. Effects of Al3(Sc,Zr) and Shear Band Formation on the Tensile Proper ties and Fracture Behavior of Al – Mg – Sc – Zr Alloy. Journal of Materials Engineering and Performance. 2015. Vol. 24, Iss. 11. pp. 4244–4252.
23. Røyset J., Ryum N. Scandium in aluminium alloys. International Materials Reviews. 2005. Vol. 50, Iss. 1. pp. 19–44.
24. Taendl J., Orthacker A., Amenitsch H., Kothleitner G., Poletti C. Influence of the degree of scandium supersaturation on the precipitation kinetics of rapidly solidified Al – Mg – Sc – Zr alloys. Acta Materialia. 2016. Vol. 117. pp. 43–50.
25. Engler O., Liu Z., Kuhnke K. Impact of homogenization on particles in the Al – Mg – Mn alloy AA 5454 – Experiment and simulation. Journal of Alloys and Compounds. 2013. Vol. 560. pp. 111–122.
26. Engler O., Miller-Jupp S. Control of second-phase particles in the Al – Mg – Mn alloy AA 5083. Journal of Alloys and Compounds. 2016. Vol. 689. pp. 998–1010.
27. Humphreys F. J., Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd ed. Elsevier, 2004.
28. Bolzoni L., Nowak M., Babu N. Grain refinement of Al – Si alloys by Nb – B inoculation. Part II: application to commercial alloys. Materials & Design. 2015. Vol. 66. pp. 376–383.
29. Elliott R. P., Shunk F. A. The Al – Nb system (Aluminum-Niobium). Bulletin of Alloy Phase Diagrams. 1981. Vol. 2, Iss. 1. pp. 75–81.
30. Rokhlin L. L., Bochvar N. R., Dobatkina T. V., Leont’ev V. G. Al-rich portion of the Al – Hf phase diagram. Russian Metallurgy (Metally). 2009. No. 3. pp. 258–262.
31. Brodova I., Bashlykov D., Manukhin A., Rozhicyna E., Popel P., Manov V. Disperse structure forming in r apidly quenche d Al – Hf alloy. Materials Science and Engineering: A. 2001. Vol. 304–306. pp. 544–547.
32. Khan G. M., Nikiforov A. O., Zakharov V. V., Novikov I. I. Influence of scandium content on the structure and superplasticity indices of aluminum alloys of Al – Zn – Mg – Sc – Zr system. Tsvetnye Metally. 1993. No. 11. pp. 55–57.
33. Pozdniakov A. V., Yarasu V., Barkov R. Yu., Yakovtseva O. A., Makhov S. V., Napalkov V. I. Microstructure and mechan ical properties of novel Al – Mg – Mn – Zr – Sc – Er alloy. Materials Letters. 2017. Vol. 202. pp. 116–119.
34. Kazakova E. F., Sokolovskaya E. M., Podyakova E. I., Portnoi V. K., Tolmacheva Yu. I. Isothermal section of the Al – Nb – Sc system at 770 оК. Moscow University Chemical Bulletin. 1994. Vol. 35, No. 3. pp. 253–255.
35. Wells M. A., Samarasekera I. V., Brimacombe J. K., Hawbolt E. B., Lloyd D. J. Modeling the microstructural changes during hot tandem rolling of AA5XXX aluminum alloys: Part II. Textural evolution. Metallurgical and Materials Transactions: B. 1998. Vol. 29, Iss. 3. pp. 621–633.
36. Nam A., Yashin V., Aryshenskii V., Zinoviev A., Kawalla R. Modelling of Cooling and Recrystallization Kinetics during Self-Annealing of Aluminium Coils. Materials Science Forum. 2018. Vol. 918. pp. 110–116.
37. Vatne H. E., Wells M. A. Modelling of the Recrystallization Behaviour of AA5xxx Aluminum Alloys after Hot Deformation. Canadian Metallurgical Quarterly. 2003. Vol. 42, Iss. 1. pp. 79–88.
38. Zaidi M. A., Sheppard T. Development of microstructure throughout roll gap during rolling of aluminium alloys. Metal Science. 1982. Vol.16. pp. 229–238.

Полный текст статьи Strategy of refining the structure of aluminum-magnesium alloys by complex microalloying with transition elements during casting and subsequent thermomechanical processing
Назад