Journals →  Tsvetnye Metally →  2019 →  #4 →  Back

COMPOSITES AND MULTIPURPOSE COATINGS
ArticleName Understanding the structure and properties of composite aluminium matrix Al – B4C – W and Al – B4C – WO3 materials
DOI 10.17580/tsm.2019.04.05
ArticleAuthor Bozhko G. G., Volodina P. A., Abuzin Yu. A.
ArticleAuthorData

National University of Science and Technology MISiS, Moscow, Russia:

G. G. Bozhko, Associate Professor at the Department of Non-Ferrous Alloys and Gold, e-mail: bojko06@mail.ru
P. A. Volodina, Postgraduate Student, Department of Non-Ferrous Alloys and Gold, e-mail: volodina94polina@mail.ru

 

Nanokom, Moscow, Russia:
Yu. A. Abuzin, Director of Research, e-mail: abuzin@nanocom.ru

Abstract

The authors of this paper worked on fine tuning the pressure impregnation process used to produce laboratory specimens of composite Al – B4C – WО3 and Al – B4C – W radioprotective materials. They also investigated the properties and structure of these materials. Tungsten, tungsten oxide and boron carbide powders were used as primary reinforcing components. The composites have an aluminium matrix. A microstructural study of the composites shows that the reinforcing particles are evenly distributed across the material and in relation to one another, and there are no flaws or visual interaction at the matrix-reinforcing particle interface. The authors investigated the phase compositions of the Al – B4C – W and Al – B4C – WO3 materials. An X-ray phase analysis of the Al – B4C – W material did not reveal any new phases. At the same time, a partial reduction of tungsten oxide to tungsten and generation of a new phase Al2O3 were observed in the Al – B4C – WО3 system. The density of the Al – B4C – W material is 5.40 g/cm3, and it is 2.90 g/cm3 for the Al – B4C – WО3 material. The materials have the following hardnesses: 51 and 70 НВ, respectively. The composites were subjected to compression testing. The Al – B4C – W system: modulus of elasticity 3.7 MPa; yield strength 87 MPa; ultimate strength 117 MPa; reduction of area 2.9%. The Al – B4C – WО3 system: modulus of elasticity 5.0 MPa; yield strength 121 MPa; ultimate strength 163 MPa; reduction of area 4.2%. Volume concentrations of the components: 0.26 B4C – 0.17 W and 0.33 B4C – 0.13 WО3. Due to the combination of properties obtained in these composite materials, they can be used as structural radioprotective materials for the radiation protection of both personnel and equipment. They can also be used in transport packages.

keywords Composite material, radioprotective material, boron carbide, tungsten, tungsten oxide, microstructure, phase composition, mechanical properties
References

1. Moradi M. R., Moloodi A., Habibolahzadeh A. Fabrication of Nanocomposite Al – B4C Foam via Powder Metallurgy-Space Holder Technique. Procedia Materials Science. 2015. Vol. 11. pp. 553–559.
2. Rana H. G., Badheka V. J., Kumar A. Fabrication of Al7075 / B4C surface composite by novel Friction Stir Processing (FSP) and investigation on wear properties. Procedia Technology. 2016. Vol. 23. pp. 519–528.
3. Narayana Yuvaraj, Sivanandam Aravindan, Vipin. Fabrication of Al5083/B4C surface composite by friction stir processing and its tribological characterization. Journal of Materials Research and Technology. 2015. Vol. 4, No. 4. pp. 398–410.
4. Dinaharan I., Murugan N., Thangarasu A. Development of empirical relationships for prediction of mechanical and wear properties of AA6082 aluminum matrix composites produced using friction stir processing. Engineering Science and Technology. 2016. Vol. 19, No. 3. pp. 1132–1144.
5. Sanjay S. J., Shashidar K. Naik, Shashishekar C. Effect of artificial ageing on wear behaviour of Al7010/B4C composite. Materials Today: Proceedings. 2017. Vol. 4. pp. 11194–11200.
6. Alizadeh A., Abdollahi A., Radfar M. J. Processing, characterization, room temperature mechanical properties and fracture behavior of hot extruded multi-scale B4C reinforced 5083 aluminum alloy based composites. Transactions of Nonferrous Metals Society of China. 2017. Vol. 27. pp. 1233–1247.
7. Akbari M., Shojaeefard M. H., Asadi P., Khalkhali A. Hybrid multi-objective optimization of microstructural and mechanical properties of B4C/A356 composites fabricated by FSP using TOPSIS and modified NSGA-II. Transactions of Nonferrous Metals Society of China. 2017. Vol. 27. pp. 2317–2333.
8. Kuznetsov S. A., Ivanov S. M., Volkov A. E., Terekhin P. N., Cherdyntsev V. V., Boykov A. A., Gorshenkov M. V. Efficiency analysis of polymer matrix UHMWPE composites with radioprotective additives. Sovremennye problemy nauki i obrazovaniya. 2013. No. 4. Available at: http://science-education.ru/ru/article/view?id=9638 (Accessed: 29.03.2018).
9. Terekhin P. N., Ivanov S. M., Volkov A. E., Kuznetsov S. A., Cherdyntsev V. V., Boykov A. A., Gorshenkov M. V. Polysulfone based radioprotective polymer matrix composite. Sovremennye problemy nauki i obrazovaniya. 2013. No. 4. Available at: http://science-education.ru/ru/article/view?id=9692 (Accessed: 29.03.2018).
10. Boykov A. A., Ivanov S. M., Volkov A. E., Kuznetsov S. A., Terekhin P. N., Cherdyntsev V. V., Gorshenkov M. V. Mechanical properties and microstructure of polymer matrix UHMWPE composite. Sovremennye problemy nauki i obrazovaniya. 2013. No. 3. Available at: http://science-education.ru/ru/article/view?id=9632 (Accessed: 29.03.2018).
11. Gulbin V. N., Kolpakov N. S., Polivkin V. V. Radio- and radiation protective composite materials with nanostructured additives. Izvestiya Volg-GTU. 2014. Vol. 10, No. 23. pp. 43–51.
12. Cherdyntsev V. V., Gorshenkov M. V., Danilov V. D., Kaloshkin S. D., Gulbin V. N. Aliminium based metal matrix radioprotective composites. Metallovedenie i termicheskaya obrabotka metallov. 2013. No. 1. pp. 14–18.
13. Novikov I. I., Zolotorevskiy V. S., Portnoy V. K., Belov N. A., Livanov D. V., Medvedeva S. V., Aksenov A. A., Evseev Yu. V. Metals science. Vol. 1. Moscow : MISiS, 2014.
14. GOST 9012–59. Metals. Method of Brinell hardness measurement. Introduced: 01–01–1960.
15. GOST 25.503–97. Design calculation and strength testing. Methods of mechanical testing of metals. Method of compression testing. Introduced: 01–01–1999.
16. Volodina P. A. Understanding the properties of radioprotective aluminium matrix composite material reinforced with boron-tungsten powders. 72nd Days of Science at MISiS : Abstracts of research papers. Moscow : MISiS, 2017.
17. Volodina P. A. Understanding the properties of radioprotective aluminium matrix composite material reinforced with boron-tungsten powders. The 10th International Conference “EurasiaScience” : Research papers. Moscow : Aktualnost.RF, 2017. pp. 44–45.

Language of full-text russian
Full content Buy
Back