ArticleName |
Iron oxidation state analysis in oxide-fluoride slags |
ArticleAuthorData |
JSC «RPA «CNIITMASH» (Moscow, Russia):
L. Ya. Levkov, Dr. Eng., Head of the Special Electrometallurgy Laboratory, e-mail: LYaLevkov@cniitmash.com, 6758745@mail.ru
Lomonosov Moscow State University (Moscow, Russia): D. А. Pankratov, Cand. Chem., Leading Scientific Researcher, Chemical Dept., e-mail: pankratov@radio.chem.msu.ru |
Abstract |
Development of significant provisions of the slag melts theory made it possible to substantiate a change in the average oxidation state (o.s.) of iron in the slag phase, and also to determine the conditions and limits of such changes. It is shown that the value of the equilibrium oxygen partial pressure, Po2 as a value available for measurements is possible to be taken as a measure of slag redox potential of, taking into account its electronic system performance (the Fermi level). It is established a functional relationship between the average o.s. of iron in the oxide-fluoride melted slags, Po2 value and the temperature. Taking into account the structural peculiarities of the external iron electron shells, a kind of dependence of its average o.s. in the slag phase on Ро2 was proposed and it was experimentally established that a decrease in Ро2 from 10–6 to 10–10 Pa at 1873 K leads to a decrease in by o.s. approximately a factor of 2. An increase in the iron content in a slag leads to a monotonous increase in its average o.s. The study of Mössbauer absorption spectra of quenched slag samples confirmed the possibility of simultaneous presence of iron in the slag in oxidation states from 0 to +3.
The paper was completed with the financial support of the Ministry of Education and Science of the Russian Federation within the framework of the Agreement on granting a subsidy for the implementation of the applied scientific research on the issue with Unique identifier of the applied research and experimental development: RFMEFI57916X0134. We are thankful to D. A. Shurygin and D. K. Terekhin (JSC “RPA “CNIITMASH”) for their assistance in discussing and preparing the material for the article and conducting experiments. |
References |
1. Pavlov А. V. Physicochemical properties of polyvalent elements in melts and development of energy and resource saving metallurgical technologies: thesis ... Dr. Eng.: 05.16.02. Pavlov Alexander Vasilievich; Moscow Steel and Alloys Inst., Мoscow, Russia (2002) 351 p. 2. Cheremisina E., Shenk J. Investigation of the content hexavalent chromium occurred in slags during steel making process. Chernye Metally. 2018. No. 4. pp. 11–12. 3. Ponomarenko A. G. The problems of thermodynamics of the phases with variable composition having collecting electronic system. Fizicheskaya khimiya. 1974. Vol. 48. No. 7. pp. 1668–1674; Vol. 48. No. 8. pp. 1950–1958. 4. Hrapko S. А. On electronic input in thermodynamical functions of solutions. Collection of research papers of DonNTU-2012. Metallurgy series. Donetsk, Ukraine. 2012. No. 1(14) – 2(15). pp. 3–13. 5. Mikhailov G. G., Kuznetsov Yu. S., Kachurina O. I., Chernukha A. S., J. Analysis of phase equilibriums in the system “Fe oxides – carbon – CO – CO2”. Vestnik Yuzhnouralskogo gosudarstvennogo universiteta. Metallurgy series. 2013. Vol. 13. No. 1. pp. 6–13. 6. Levkov L. Ya. Theoretical prerequisites and practical methods of controlling physicochemical and thermophysical processes in electroslag remelting that determine the quality of critical products: thesis ... Dr. Eng.: 05.16.02/ Levkov Leonid Yakovlevich, JSC “RPA “CNIITMASH”. Мoscow, Russia (2016). 339 p. 7. Yan B., Zhang J., Song Q. Thermodynamic behaviour of transition metal (Cr, Ti, Nb, V) oxides in molten slags. Proc. VIII International Conference on Molten Slags, Fluxes and Salts, MOLTEN — 2009. Santiago, Chile. Chapter 1. pp. 309–317. 8. Hundermark R. J., Jahanshahi S., Sun S. Proceedings IMPC 2003. Cape Town. SA. Vol. 3. pp. 1370–1378. 9. Levkov L. Ya. Oxidation-reduction modeling of electroslag remelting. International Conference on Mathematical Modeling and Simulation of Metal Technologies MMT. Ariel, Israel. 2000. pp. 35–37. 10. Dub V. S., Levkov L. Ya., Shurygin D. A. Applications of ESR in modern energy engineering. Proceedings of the Medovar Memorial Symposium, Kyiv, 7-10.06.2016. pp. 39–49. 11. Jonczy I., Stanek J. Phase composition of metallurgical slag studied by Mössbauer spectroscopy. Nukleonika. 2013. Vol. 58(1). pp. 127–131. 12. Pankratov D. A. Mössbauer study of oxo-derivatives of iron in the Fe2O3–Na2O2 system. Inorganic Materials. 2014. Vol. 50. No. 1. pp. 82–89. DOI: 10.1134/S0020168514010154. 13. Menil F. Systematic trends of the 57Fe Mössbauer isomer shifts in (FeOn) and (FeFn) polyhedra. Evidence of a new correlation between the isomer shift and the inductive effect of the competing bond T-X (→Fe) (where X is O or F and T any element with a formal positive charge). J. Phys. Chem. Solids. 1985. Vol. 46. pp. 763–789. 14. Sunayama S., Kavakami M., Goto K. S. Quick Measurement of Oxygen Potential in Steelmaking. Tetsu-to Hagane. 1978. Vol. 64. No. 4. pp.12–18. 15. Timucin M., Morris A. E. Phase Equilibria and Thermodynamic Studies in the System CaO–FeO–Fe2O3–SiO2. Met. Transactions. 1970. Vol. 1. pp. 3193–3201. 16. Kawakami M., Goto K. S., Matsuoka M. A. Solid Electrolyte Oxygen Sensor for Steelmaking Slags of the B. O. Converter. Met. Trans. 1980. Vol. 11 B. pp. 463–469. 17. Yang L., Belton G. R. Iron redox equilibria in CaO–Al2O3–SiO2 and MgO–CaO–Al2O3–SiO2 slags. Meta. Mat. Trans. 1998. Vol. 29B. pp. 837–845. 18. Shiro Ban-Ya Mathematical Expression of Slag-Metal Reactions in Steelmaking Process by Ouadratic Formalism Basedon the Regular Solution Model Faculty of Engineering. ISIJ International. 1993. Vol. 33. No. 1. pp. 2–11. 19. Jahanshahi S., Sun S. Zhang L. Recent Developments in Physico-Chemical Characterisation and Modelling of Ferroalloy Slag Systems. Proceedings: Tenth International Ferroalloys Congress. 1–4 February 2004. Cape Town. S.A. pp. 316–332. 20. Mikelsons J. Degree of oxidation of iron in СaO–SiО2–FeОn slag melts as a Function of the oxigen partial pressure of the gas phase. Arhiv für das Eisenhüttenwesen. 1982. Vol. 53. № 6. pp. 251–265. 21. Yurkov G. Yu., Fionov A. S., Kozinkin A. V., Koksharov Yu. A., Ovtchenkov Y. A., Pankratov D. A., Popkov O. V., Vlasenko V. G., Kozinkin Yu. A., Biryukova M. I., Kolesov V. V., Kondrashov S. V., Taratanov N. A., Bouznik V. M. Synthesis and physicochemical properties of composites for electromagnetic shielding applications: a polymeric matrix impregnated with iron- or cobalt-containing nanoparticles. Journal of Nanophotonics. 2012. Vol. 6(1). pp. 061717.1–061717.21. DOI: 10.1117/1.JNP.6.061717. 22. Rostovshchikova T. N., Korobov M. S., Pankratov D. A., Yurkov G. Y., Gubin S. P. Catalytic conversions of chloroolefins over iron oxide nanoparticles. 2. Isomerization of dichlorobutenes over iron oxide nanoparticles stabilized on the surface of ultradispersed poly (tetrafluoroethylene). Russ. Chem. Bull. 2005. Vol. 54(6). pp. 1425–1432. DOI: 10.1007/s11172-005-0422-1. |