Journals →  Eurasian mining →  2018 →  #2 →  Back

PHYSICS OF ROCKS AND PROCESSES
ArticleName Geodynamic aspects of investigations in underground research laboratory (Nizhnekansk Massif)
DOI 10.17580/em.2018.02.03
ArticleAuthor Kamnev E. N., Morozov V. N., Tatarinov V. N., Kaftan V. I.
ArticleAuthorData

VNIPIpromtekhnologii, Moscow, Russia:

Kamnev E. N., Professor, Doctor of Geologo-Mineralogical Sciences, kamnev@vnipipt.ru

 

Geophysical Center, Russian Academy of Sciences, Moscow, Russia:
Morozov V. N., Professor, Doctor of Engineering Sciences, Chief Researcher
Tatarinov V. N., Doctor of Engineering Sciences, Head of Geodynamics Laboratory
Kaftan V. I., Doctor of Engineering Sciences, Chief Researcher

Abstract

According to the actual international practice, the first stage of building a deep geological repository is construction of an underground research laboratory (URL) in order to detail enclosing rock mass characteristics. In 2018 in the Krasnoyarsk Territory, in the Nizhnekansk Granite-Gneiss Massif, the URL construction is planned at a depth of 500–600 m below ground surface. After the research completion scheduled in 2024–2025, the final decision on the suitability of rock mass for the high-level radioactive waste isolation will be made. This article discusses geodynamic aspects of underground research in the framework of data on modern movement in the earth crust in the north of the Nizhnekansk Massif according to satellite geodetic survey and high-precision relevelling. The studies executed in 2010–2016 provided new knowledge on the modern geodynamic behavior in the region which lies in the contact zone of the largest tectonic structures—Siberian Platform, West Siberian Plate and Sayan orogen. The instrumental observations prove the cyclic nature of the modern geodynamic movement governed by the interaction between the listed structures. In 2012–2013, the regional tectonic regime altered abruptly in the form of the sign change of compression and tension on the right and left banks of the Yenisei River, as well as the increase of the horizontal movement velocities. The maximum horizontal movement velocities are recorded in the dynamic influence zone of the Muratov and Right Bank faults. Plotted by the observation data, the map of the earth surface dilation confirms the earlier drawn conclusion that the right bank regions experience uplift while the left bank region undergoes subsidence. These data correlate with the high-precision leveling carried out by Geolkom in 2012–2015. The observation results also imply the existence of a differential movement zone with the limits of the Yenisei site. The authors propose a package of investigations into modern tectonics in the region of URL.

This study was supported by the Russian Science Foundation, Project No. 18-17-00241.

keywords Geodynamics, radioactive waste, underground research laboratory, Nizhnekansk Massif, space geodesy, modern earth crust movement, GPS/GLONASS
References

1. Anderson E. B. et al. Underground Isolation of Radioactive Waste. V. N. Morozov (Ed.). Moscow : Gornaya kniga. 2011. 592 p.
2. Khafizov R. R., Mokrykh S. A., Zuev V. A., Klimov O. V. et al. Implementation of Activities for Safe Operation of Isotope Chemical Plant Workshop No. 1. Zheleznogorsk : Geolkom. 2011. 192 p.
3. Amendment No. 1 to the Report on Validation of Safe Arrangement and Construction of Non-Nuclear Plant Radioactive Waste Storage Facility in Compliance with the Project Documentation for the Final Radioactive Waste Isolation (Nizhnekansk Massif, Krasnoyarsk Territory) within the Underground Research Laboratory. Moscow : NO RAO. 2016. 60 p.
4. Kamnev E. N., Morozov V. N., Belov S. V. Uranium production in the active tectonogenesis zones. Russian Uranium: Scientific–Technical Conference Proceedings. Moscow : TSNIIATOMINFORM. 2008. pp. 16–25.
5. Melnikov N. N. (Ed.). Methods and Systems for Seismic–Deformation Monitoring of Induced Earthquakes and Rock Bursts. Novosibirsk : SO RAN, 2010. 261 p.
6. Petukhov I. M., Linkov A. M. Mechanics of Rock Bursts and Outbursts. Moscow : Nedra, 1982. 223 p.
7. Rasskazov I. Yu., Saksin B. G., Petrov V. A., Prosekin B. A. Geomechanics and seismicity of the Antey deposit rock mass. Journal of Mining Science. 2012. Vol. 48, No. 3. pp. 405–412.
8. Tatarinov V. N., Bugaev E. G., Tatarinova T. A. Crust deformation assessment by satellite observation data in the context of validation program for safe geological radioactive waste disposal and isolation. Gornyy Zhurnal. 2015. No. 10. pp. 27–32. DOI: 10.17580/gzh.2015.10.05.
9. Tsebakovskaya N. S., Utkin S. S., Kapyrin I. V. Review of International Practice of Spent Fuel and Radioactive Waste Disposal. Moscow : Komtekhprint. 2015. 208 p.
10. Batugin A. S., Batugina I. M., Tianwei L. Tectonophysical model of fault tectonic rock burst with wing sliding. Journal of Liaoning Technical University (Natural Science). 2016. Vol. 35(6). pp. 561–565.
11. Belov S. V., Gvishiani A. D., Kamnev E. N., Morozov V. N., Tatarinov V. N. Development of complex model of evolution of structural-tectonic blocks of the Earth’s crust for choosing storage sites of high level radioactive waste. Russian Journal of Earth Sciences. 2008. Vol. 10. No. 4.
12. Kempanen K. Case study: ONKALO underground rock characterization facility. Proceeding of the IAEA Workshop on Need for and Use of Generic and Site-Specific Underground Research Laboratories to Support Siting, Design and Safety Assessment Developments. Albuquerque. NM. 2014. pp. 7–9.
13. Faybishenko B., Birkholzer J., Sassani D., Swift P. International approaches for nuclear waste disposal in geological formatio ns: geological challenges in radioactive waste isolation. Fifth Worldwide Review. Lawrence Berkeley National Laboratory (LBNL). Berkeley. CA United States. 2017.
14. Hampel A., Herchen K., Lux K. H., Günther R. M., Salzer K., Winkley W., Pudewills A., Yildirim S., Rokahr R., Missal C., Gährken A., Stahlmann J. Vergleich aktueller Stoffgesetze und Vorgehensweisen anhand von Modellberechnungen zum thermo-mechanischen Verhalten und zur Verheilung von Steinsalz, Synthesebericht. Verbundsprojekt. Berlin. Deutschland. 2016.
15. Brzezinski A., Jówik M., Kaczorowski M. Geodynamic research at the department of planetary geodesy, SRC PAS. Reports on Geodesy and Geoinformatics. 2016. 100/2016(1). pp. 131–147. DOI: 10.1515/rgg-2016-0011.
16. Tatarinov V. N., Kaftan V. I., Seelev I. N. Study of the presentday geodynamics of the Nizhnekansk Massif for safe disposal of radioactive wastes. Atomic Energy. 2017. Vol. 121. No. 3. pp. 203–207.

Full content Geodynamic aspects of investigations in underground research laboratory (Nizhnekansk Massif)
Back