ArticleName |
Геомеханическая оценка условий образования провалов на земной поверхности
на участке прорыва пресных вод в калийный рудник |
ArticleAuthorData |
Пермский федеральный исследовательский центр УрО РАН, Пермь, Россия:
Барях А. А., директор, чл.-корр. РАН, д-р техн. наук
Горный институт УрО РАН – филиал ФГБУН Пермского федерального исследовательского центра УрО РАН, Пермь, Россия: Девятков С. Ю., ведущий инженер, sd@mi-perm.ru |
References |
1. Mustel I. P., Shlendova T. K. Changing of hydrogeological conditions under emergency deformation of the undermined rock mass (with an example of Berezniki-1 mine). Gornyi Zhurnal. 2016. No. 4. pp. 32–39. DOI: 10.17580/gzh.2016.04.06 2. Baryakh A. A., Samodelkina N. A. Geomechanical estimation of deformation intensity above the flooded potash mine. Journal of Mining Sciences. 2017. Vol. 53, No. 4. pp. 630–642. 3. Ponomarenko T. Ecological, economic and social consequences of emergencies on potash mines. Management Systems in Production Engineering. 2012. No. 2(6). pp. 28–31. 4. Owoseni J. O., Tamarautobou E. U., Asiwaju-Bello Y. A. Application of Sequential Analysis and Geographic Information Systems for Hydrochemical Evolution Survey, Shagari Environ, Southwestern Nigeria. American International Journal of Contemporary Research. 2013. Vol. 3, No. 3. pp. 38–48. 5. Courtney M. G. R. Determining the number of factors to retain in EFA: Using the SPSS R-Menu v2.0 to make more judicious estimations. Practical Assessment, Research and Evaluation. 2013. Vol. 18(8). 6. Hisafumi Asaue, Naoyuki Tadakumsa, Katsuaki Koike. Application of GIS to Hydrogeological Structure Modeling Aimed at Conservation of Groundwater Resources. Geoinformatics. 2014. Vol. 25, Iss. 3. pp. 159–168. 7. Belkhiri L., Narany T. S. Using multivariate statistical analysis, geostatistical techniques and structural equation modeling to identify spatial variability of groundwater quality. Water Resources Management. 2015. Vol. 29, Iss. 6. pp. 2073–2089. 8. Kologrivko A. A. Decrease in geoecological consequences by underground mining of potash fields. Herald of Polotsk State University. Series F: Civil Engineering. Аpplied. 2014. No. 16. pp. 101–110. 9. Zubov V. P., Smychnik A. D. The concept of reducing the risks of potash mines flooding caused by groundwater inrush into excavations. Journal of Mining Institute. 2015. Vol. 215. pp. 29–37. 10. Samodelkina N. A. Prediction of negative consequences of Berezniki Mine-1 flooding. Strategies and Processes of Georesources Development : Collection of Scientific Papers. Perm : GI UrO RAN. 2014. Iss. 12. pp. 84–87. 11. Devyatkov S. Yu. Determining conditions of sinkholes on ground surface. Strategies and Processes of Georesources Development : Collection of Scientific Papers. Perm : GI UrO RAN. 2014. Iss. 12. pp. 96–98. 12. Baryakh A. A., Devyatkov S. Yu., Samodelkina N. A. Theoretical explanation of conditions for sinkholes after emergency flooding of potash mines. Journal of Mining Science. 2016. Vol. 52, No. 1. pp. 36–45. 13. Baryakh A. A., Samodelkina N. A. Rheological analysis of geomechanical processes. Journal of Mining Science. 2005. Vol. 41, No. 6. pp. 522–530. 14. Amusin B. Z., Linkov A. M. Applying variable modules in solving a class of problems of linearly hereditary creep. Izvestiya Akademii Nauk SSSR. Mekhanika tverdogo tela. 1974. No. 6. pp. 162–166. 15. Konosavsky P. K., Potapov A. A., Makashov S. E. Predictive estimate of carnallite dissolution in pillars in Berezniki Mine-1 after emergency flooding (Upper Kama Potash Deposit). Modeling in solution of geoecological problems: Sergeev’s Lectures. Moscow : GEOS. 2009, Iss. 11. pp. 357–361. 16. Khodkov A. E. Test data on in situ leaching of carnallite. Transactions of the All-Union Research Institute of Mineral-Salt Production. 1953. Iss. 28. pp. 38–49. |