ArticleName |
Influence of component composition on the properties of carbonaceous sidewall blocks of aluminium electrolysers |
Abstract |
The properties of sidewall blocks should differ from the ones of hearth blocks, because they are not intended for current transmission. Nowadays, the main way to improve the technology for production of carbonaceous cathode blocks (including both hearth and sidewall ones), is to increase a part of artificial graphite in formulation (graphite-based blocks or graphite blocks) and a supplementary high-temperature processing of blocks by using electric power (grafitation; grafitated blocks). This ensures a decrease of specific electrical resistance ad increases thermal conductivity and thermal stability. Our paper shows the necessity and possibility to correct properties of sidewall blocks, which are not intended for current transmission. Investigation on influence of component composition on the properties of carbonaceous blocks based on traditional materials (thermoanthracite and graphite) shows that decrease of graphite level to 15% (in comparison with hearth blocks) enables optimization of their properties, that is, increasing of specific electrical resistance by 3 times. This allows for elimination of current losses through electrolyzer walls, increases the mechanical strength by 2 times, and decreases the heat conductivity by 4 times: all of this compensates the necessity in additional heatinsulated vermiculite plates. Taking into account the fact that both graphite and thermoanthracite are in different price category, decreasing the level of graphite reduces the production costs of sidewall blocks, which are thus able to compete with carbide-silicon plates. We made a review of globally popular modern methods and means of control of sidewall blocks. The importance of international standards of control is shown. Our article is written with the support of the Government of the Russian Federation (Resolution No. 211 on 16.03.2013), agreement No. 02.A03.21.0011. |
References |
1. Skorov V. G., Palshin A. V., Bazhin V. Yu., Patrin R. K. Increasing of resistivity of cathode lining of HA electrolyzer OA-300M1. Third international congress “Non-ferrous metals-2011”. Krasnoyarsk, 2011. pp. 243–253. 2. Akramov M. B., Safarov M. M., Radzhabov F. S., Erzolov B. B. Increasing of resistivity of side lining of aluminium electrolysers. Vestnik tekhnologicheskogo universiteta Tadzhikistana. 2010. No. 2. pp. 60–63. 3. Sorlie М., Oye H. A. Cathodes in aluminium electrolysis. 2 ed. Du..sseldorf : Aluminium-Verlag GmbH, 2010. 4. Tsyplakov A. M., Romanov V. P., Makherov V. V., Repko A. P. Method of control of side lining thickness in aluminium electrolyzer. Patent RF, No. 767237, IPC C 25 C 3/06. Published: 30.09.1980. 5. Gromov B. C., Pak R. V., Barantsev A. G. Cathode device of aluminium electrolyzer. Patent RF, No. 2113550, IPC C 25 C 3/08. Published: 20.06.1998. 6. Napsikov V. V. Side lining of aluminium electrolyzer from silicon carbide. Zapiski Gornogo instituta. 2009. Vol. 182. pp. 159–161.
7. High-quality plates SICAL-78 made of silicon carbide on nitride binding for sede lining of electrolyzers. Available at : www.skamol.ru 8. Orach T. Carbonaceous and graphite lining of cathode in production of primary aluminium. Third international congress “Non-ferrous metals–2011”. Krasnoyarsk, 2011. pp. 678, 679. 9. Butakova T. V., Lepp M. V., Bleskin G. S., Spektoruk A. A., Olvovskiy S. A. Improvement of strength and thermal-physical properties of hearth blocks of JSC “ENERGOPROM — Novosibirsk ekectrode plant”. Seventh international congress “Non-ferrous metals and minerals – 2014”. Krasnoyarsk, 2014. pp. 1041–1042. 10. Ten V. P., Gromyko A. I., Nefedov I. E., Frizorger V. K., Lazarev D. G. Control of current distribution in cathode knot of aluminium electrolyser. Seventh international congress “Non-ferrous metals and minerals – 2014”. Krasnoyarsk, 2014. pp. 434–439. 11. Vokhidov M. M., Muradien A., Azizov B. S., Muradien P. The comparative characteristic of anthracites various deposits and changes of their properties at thermal processing. Doklady Akademii nauk Respubliki Tadzhikistan. Fizicheskaya khimiya. 2012. Vol. 55, No. 4 (152). pp. 322–325. 12. Pyaterneva A. A., Bazhin V. Yu. Fluorination of alumina sand type during exhaust gases treatment of aluminum reduction process. Non-ferrous Мetals. 2015. No. 1. pp. 25–28. 13. Song Yang, Peng Jianping, Di Yuezhong, Wang Yaowu, Li Baokuan, Feng Naixiang. The Impact of Cathode Material and Shape on Current Density in an Aluminum Electrolysis Cell. JOM: Journal of the Minerals, metals, and Materials Society. 2016. Vol. 68, No. 2. pp. 593–599. 14. Apalkova G. D., Prosvirina I. I., Selesnev A. N. Design, development and production of cathode blocks for new generation of high power electrolyzers. 1-st World Conference on Carbon Eurocarbon 2000. Berlin, 9–13 july 2000. 15. Borisoglebskiy Yu. V., Galevskiy G. V., Kulagin N. M., Mintsis M. Ya., Sirazutdinov G. A. Aluminium metallurgy. Novosibirsk : Nauka; Sibirskaya izdatelskaya firma RAN, 1999. 438 p. 16. Mochalov V. V., Apalkova G. D., Bezrukov A. N., Pul N. G. Lining for manufacturing of ultragraphite lining blocks. Patent RF, No. 1510408 RUS, IPC C 25 C 3/08. Published: 22.05.1989. 17. TU 1913-109-014–2003 with changes 1–3. Sidewall and corner blocks for aluminium electrolyzers. Introduced: 01.07.2003. MTK 109. Electrode production. JSC «Ural electrode institute», Group I 31. Available at : http://docs.cntd.ru/document/415950623 (accessed: 14.08.2017) 18. Umanskiy Ya. S. Radiography of metals and semiconductors. Moscow : Metallurgiya, 1979. 496 p. 19. Apalkova G. D., Kalyadov E. V., Varypaev E. S. Investigation of interaction of thermal conductivity and electric resistivity of coal electrodes. Khimiya tverdogo topliva. 1985. No. 5. pp. 139–141. 20. Patrin R. K. Increasing of efficiency of resource saving during electrolysis production of aluminium using lining materials of cathode : Dissertation … of Candidate of Engineering Sciences. 2015. 127 p. 21. Voluntary system of standartization in the USA. Byulleten inostrannoy kommercheskoy informatsii. 1998. No.121. pp. 4, 5. 22. GOST R ISO 12987–2014. Carbonaceous materials for the production of aluminium. Anodes, cathodes blocks, sidewall blocks and baked ramming pastes. Determination of the thermal conductivity using a comparative method. Available at : StandartGost.ru (accessed: 14.08.2017) 23. GOST R ISO 8005–2014. Carbonaceous materials used in the production of aluminium. Green and calcined coke. Determination of ash content. Available at : StandartGost.ru (accessed: 14.08.2017) 24. GOST R ISO 11713–2014. Carbonaceous materials used in the production of aluminium. Cathode blocks and baked anodes. Determination of electrical resistivity at ambient temperature. Available at : docs.cntd.ru/document/471853764 (accessed: 14.08.2017). 25. GOST R ISO 18515–2014. Carbonaceous materials used in the production of aluminium. Cathode blocks and baked anodes. Determination of compressive strength). Available at : http://data.1000gost.ru/catalog/Data2/1/4293773/4293773446.pdf (accessed: 30.01.2018). 26. GOST 23776–79. Carbonic products. Methods of measuring specific electrical resistance. Introduced: 01.01.1982. 27. GOST 22692–77. Carbon materials. Method for determination of ash. Introduced: 01.07.1978. 28. GOST 23775–79. Carbonic products. Methods of measuring ultimate compression, bending and tensile strength (diametral compression). Introduced: 01.01.1981. 29. Apalkova G. D. Rammability of aluminum electrolyzer's carbon pastes. Tsvetnye Metally. 2017. No. 6. pp. 59–62. |