Journals →  Tsvetnye Metally →  2017 →  #11 →  Back

TO THE 85-th ANNIVERSARY OF ACADEMICAL SCIENCE OF THE URALS
ArticleName Meta-stable aluminides formation in Al – Hf – Ti alloys
DOI 10.17580/tsm.2017.11.12
ArticleAuthor Popova E. A., Kotenkov P. V., Shubin A. B.
ArticleAuthorData

Institute of Metallurgy of Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia:

E. A. Popova, Senior Researcher of Laboratory of Physical Chemistry of Metallurgical Melts, e-mail: po.elvira@gmail.com
P. V. Kotenkov, Researcher of Laboratory of Physical Chemistry of Metallurgical Melts, e-mail: p.kotenkoff@yandex.ru
A. B. Shubin, Head of Laboratory of Physical Chemistry of Metallurgical Melts, e-mail: fortran@list.ru

Abstract

The aim of our investigation is producing of the new master alloys based on Al – Hf – Ti system including meta-stable aluminides with the cubic lattice of L12 structure type identical to the aluminum matrix. The preparing of ligature alloys was carried out in the carbon resistance furnace. Melts overheated on about 100–400 degrees higher than liquidus were cast into a bronze mold. The crystallization speed was about 103 oC/s. High speed of crystallization of Al-transition metal melts leads to the appearing of internal tensions and then to the formation of primary metastable aluminides which are thermodynamically non-stable phases. Under the studied conditions we can observe different aluminide growth forms: cuboid, petal, cross-like and dendritic. The internal structure of primary crystals shows gradually increasing of titanium and hafnium concentration from the edge of aluminide crystal to its center. The Ti and Hf content in the formed Aln(HfхTi1–х) meta-stable aluminides is proportional to their content in alloys in spite of the partial solubility of addition metals in the α-Al dendritic cells. The 2.3 times increasing of hafnium content in alloy leads to the similar increasing of Hf fraction x in the aluminides (about 2.1 times, from 0.31 to 0.66). At the same time the lattice parameter mismatch between the aluminide lattice and aluminum matrix lattice significantly decreases. The master alloy with such nucleating phase will provide a greater effect of grain refinement. In the crystallization of superheated melts of the Al – Hf – Ti system, the degree of supersaturation of the aluminum solid solution by hafnium is almost twice as high as that for the binary Al – Hf system and with less overheating. This indicates the possibility of obtaining a larger volume fraction of secondary Al3(HfхTi1–х) aluminides upon doping the dispersively hardened aluminum alloys with small additives of Hf + Ti.

keywords Aluminum alloys, non-equilibrium crystallization, transition metals, alloying, cubic lattice, aluminide, melt overheating, supersaturated solid solution
References

1. Pozdnyakov A. V., Osipenkova A. A., Popov D. A., Makhov S. V., Napalkov V. I . Effect of low additives of Y, Sm, Gd, Hf and Er on the structure and hardness of alloy Al – 0.2% Zr – 0.1% Sc. Metallovedenie i termicheskaya obrabotka metallov. 2016. No. 9 (735). pp. 25–30.
2. Zakharov V. V. About alloying of aluminum alloys with transition metals. Metallovedenie i termicheskaya obrabotka metallov. 2017. No. 2 (740). pp. 3–8.
3. Wu H., Wen S. P., Gao K. Y., Huang H., Wang W., Nie Z. R. Effect of Er additions on the precipitation strengthening of Al – Hf alloys. Scripta Materialia. 2014. Vol. 87. pp. 5–8.
4. Stan K., Litynska-Dobrzynska L., Ochin P., Garzel G., Wierzbicka-Miernik A., Wojewoda-Budka J. Effect of Ti, Zr and Hf addition on microstructure and properties of rapidly solidified Al – Mn – Fe alloy. Journal of Alloys and Compounds. 2014. Vol. 615. pp. S607–S611.
5. Zamyatin V. M., Reznik P. L., Ovsyannikov B. V. Peculiarities of crystallization of Al – Mg alloys with transition metal additives. Rasplavy. 2012. No. 1. pp. 77–80.
6. Norman A. F., Prangnell P. B., McEwen R. S. The solidification behavior of dilute aluminium-scandium alloys. Acta Materialia. 1998. Vol. 46, No. 16. pp. 5715–5732.
7. Knipling K. E., Dunand D. C., Seidman D. N. Nucleation and precipitation strengthening in dilute Al – Ti and Al – Zr alloys. Metallurgical and Materials Transactions: A. 2007. Vol. 38A. pp. 2552–2563.
8. Carlsson A. E., Meschter P. J. Relative stability of L12, D022, and D023 structures in MAl3 compounds. Journal of Materials Research. 1989. Vol. 4, No. 5. pp. 1060–1063.
9. Malek P., Janecek M., Smola B., Bartuska P., Plestil J. Structure and properties of rapidly solidified Al – Zr – Ti alloys. Journal of Materials Science. 2000. Vol. 35. pp. 2625–2633.
10. Norman A. F., Tsakiropoulos P. Rapid solidification of Al – Hf alloys – solidification, microstructures and decomposition of solid-solutions. International Journal of Rapid Manufacturing. 1991. Vol. 6, No. 3/4. pp. 185–213.
11. Srinivasan S., Desch P. B., Schwarz R. B. Metastable Phases in the Al3X (X = Ti, Zr, and Hf) Intermetallic System. Scripta Metallurgica et Materialia. 1991. Vol. 25, No. 11. pp. 2513–2516.
12. Brodova I. G., Polents I. V., Esin V. O., Lobov B. M. On the formation of the cast structure of supercooled Al – Ti alloys. Fizika metallov i metallovedenie. 1992. No. 1. pp. 84–89.
13. Brodova I. G., Zamyatin V. M., Popel P. S., Esin V. O., Baum B. A., Moiseev A. I., Korshunov I. P., Polents I. V. Conditions of formation of metastable phases during the crystallization of Al – Zr alloys. Rasplavy. 1988. Vol. 2, No. 6. pp. 23–27.
14. Popova E. A., Shubin A. B., Kotenkov P. V., Pastukhov E. A., Bodrova L. E., Fedorova O. M. Al – Ti – Zr master alloys: structure formation. Russian metallurgy (Metally). 2012. No. 5. pp. 357–361.
15. Murray J. L., McAlister A. J., Kahan D. J. The Al – Hf (aluminumhafnium) system. Journal of Phase Equilibria. 1998. Vol. 19, No. 4. pp. 376–379.
16. Kerr H. W., Cisse J., Boiling G. F. On equilibrium and nonequilibrium peritectic transformation. Acta Metallurgica. 1974. Vol. 22. pp. 677–686.
17. Du Y., Chang Y. A., Huang B., Gong W., Jin Z., Xu H., Yuan Z., Liu Y., He Y., Xie F. Y. Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation. Materials Science and Engineering: A. 2003. Vol. 363, No. 1/2. pp. 140–151.
18. Setiukov O., Fridlyander I. Peculiarities of Ti dendritic segregation in aluminum alloys. In: Aluminium Alloys: Their Physical and Mechanical Properties. Materials Science Forum. France. 1996. pp. 195–200.
19. Popova E. A., Kotenkov P. V., Pastukhov E. A., Shubin A. B. Master alloys Al – Sc – Zr, Al – Sc – Ti, and Al – Ti – Zr: their manufacture, composition, and structure. Russian Metallurgy (Metally). 2013. Vol. 2013, No. 8. P. 590–594.
20. Shubin A. B., Popova E. A., Kotenkov P. V., Pastukhov E. A., Shunyaev K. Yu. Crystallization of Al – Sc – Ti alloys with low cooling velocity: morphology of intermetallide particles. Rasplavy. 2015. No. 5. pp. 3–11.
21. Ghosh G., Asta M. First-principles calculation of structural energetics of Al – TM (TM = Ti, Zr, Hf) Intermetallics. Acta Materialia. 2005. Vol. 53. pp. 3225–3252.

Language of full-text russian
Full content Buy
Back